

Members of the graduation committee:

Prof. dr. ir. M.]. G. Bekooij ~ University of Twente (promotor)

Prof. dr. ir. G.J. M. Smit University of Twente
Dr. A.K.I. Remke University of Twente
Prof. dr. ing. J. Castrillon Technische Universitit Dresden

Prof. dr. ir. T. Basten

Eindhoven University of Technology

Dr. ir. E. de Groote University of Twente (special expert)

Prof. dr. J.N. Kok

University of Twente (chairman and secretary)

UNIVERSITY OF TWENTE.

Faculty of Electrical Engineering, Mathematics and Computer Sci-
ence, Computer Architecture for Embedded Systems (CAES) group

IDS Ph.D. Thesis Series No. 18-463
Institute on Digital Society
PO Box 217, 7500 AE Enschede, The Netherlands

) Applied and
N 7/1/0 Engineering Sciences

This work is part of the research program ‘Integrated Design Ap-
proach for Safety-Critical Real-Time Automotive Systems with
project number 12698, which is financed by NXP and the Nether-
lands Organization for Scientific Research (NWO). Project leader :
Prof. dr. ir. M.J.G. Bekooij

Copyright © 2019 Guus Kuiper, Enschede, The Netherlands.
This work is licensed under the Creative Commons Attribution-
NonCommercial 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/
4.0/deed.en_US.

This thesis was typeset using IKTEX, TikZ, and Kile. This thesis was
printed by Gildeprint Drukkerijen, The Netherlands.

ISBN 978-90-365-4541-9
ISSN 2589-4730; IDS Ph.D. Thesis Series No. 18-463
DOI 10.3990/1.9789036545419

http://www.utwente.nl/
http://caes.ewi.utwente.nl/
http://www.stw.nl/
http://creativecommons.org/licenses/by-nc/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc/4.0/deed.en_US
http://www.gildeprint.nl/
http://opc4.kb.nl/DB=1/SET=2/TTL=1/CMD?ACT=SRCHA&IKT=1007&SRT=YOP&TRM=2589-4730
https://doi.org/10.3990/1.9789036545419

ACCURATE ANALYSIS OF REAL-TIME STREAM

PROCESSING APPLICATIONS

USING DATAFLOW MODELS AND TIMED AUTOMATA

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,
op gezag van de rector magnificus,
prof. dr. T. T. M. Palstra,
volgens besluit van het College voor Promoties
in het openbaar te verdedigen
op vrijdag 8 maart 2019 om 16.45 uur

door

Guus Kuiper

geboren op 29 januari 1988
te Doetinchem

Dit proefschrift is goedgekeurd door:

Prof. dr. ir. M.]. G. Bekooij (promotor)

Copyright © 2019 Guus Kuiper
ISBN 978-90-365-4541-9

ABSTRACT

Autonomous cars are an example of a safety-critical Cyber-Physical System (CPS).
In such a CPS, there is a very complicated interaction between the continuous-
time physical environment and the discrete-time embedded control system of the
car using its sensors and actuators. The sensors periodically sample the physical
properties of the environment and produce streams of data samples. The actuators
consume data from streams and expect to receive this data periodically from the
digital control system. In this thesis, we focus on the modem system in autonomous
cars, which is used for vehicle-to-vehicle communication. Such a safety-critical
embedded system must be analyzed in order to verify whether temporal constraints
will be satisfied. During the design of such a system, bounds must therefore be
derived for the interval of time it takes for a real-time system to produce an output
as a response to an input event.

Nowadays, these embedded systems are often implemented on multiple processors.
The software that is running on such a system is split into tasks, that are connected
by First-In-First-Out (FIFO) communication buffers. Some of these tasks execute
conditionally, depending on the value of the incoming data. The incoming data
can put the application in a certain mode, in which only a subset of tasks actually
executes. Run-time schedulers determine when a task is allowed to execute on a
processor.

The available analysis methods for this type of systems have severe shortcomings.
The analysis results of these methods are insufficiently accurate. Furthermore, the
run-time of the analysis methods is often unacceptably high. Moreover, most of
these methods do not support applications containing cyclic dependencies and
dynamic applications containing conditionally executed tasks.

The analysis of applications containing cyclic dependencies naturally fits to dataflow
analysis approaches. However, for dynamic applications where tasks are scheduled
using budget schedulers, the accuracy of dataflow analysis can be low. We therefore
introduce locks that cause additional sequence constraints in these dynamic appli-
cations. These locks prevent interference between tasks in different modes, which
can reduce the latency for dynamic applications.

To enable the analysis for non-starvation-free schedulers, we also introduce barriers.
These non-starvation-free schedulers are a broader class than budget schedulers.
The barriers ensure that all inputs of a mode are available before any tasks in that
mode can start. The combination of locks and barriers allows for compositional
analysis of modes. This means that each mode can be analyzed in isolation, even
if these modes belong to a different level in the hierarchy of an application. As a

Vi

result, existing analysis methods for non-dynamic applications can be used for each
mode in isolation.

To obtain more accurate analysis results, we introduce a transformation from data-
flow graphs into timed automata. Using these timed automata, accurate analysis
can be performed by taking the correlation of firing durations into account of
consecutive firings of the same task, but also of different tasks. Current dataflow
analysis techniques abstract from this specific type of correlation by means of over-
approximation, whereas we can take this correlation into account with timed au-
tomata, without over-approximation. Moreover, we enable the analysis of systems
with out-of-order communication by annotating tokens with a token index order,
instead of only using the token arrival order. Out-of-order communication can be
a result of multiple executions of the same tasks in parallel. By consuming tokens
in index order, the functional behavior of the graph is orthogonal to the arrival
order of the tokens.

In order to accurately analyze the consequences of pre-emptive task scheduling
on the temporal behavior of an application, we make use of model checking of
timed automata. In this model we include correlation of the executions of different
tasks, sharing the same resource. However, modeling task scheduling directly in
a timed automata model can make the scheduling problem undecidable. We ad-
dress this issue by either an over-approximation in the timed automata model, or
by allowing the model checker to over-approximate reachability. The run-time of
the analysis method is improved by combining model checking of timed automata
with dataflow analysis. Moreover, latency is minimized by using this hybrid anal-
ysis/optimization method, where we introduce additional sequence constraints to
limit the interference between tasks.

SAMENVATTING

Autonome auto’s zijn een voorbeeld van een veiligheidskritisch Cyber-Physical
System (CPS). In zo een CPS is er een zeer gecompliceerde interactie tussen de
continue tijd van de fysieke omgeving van het systeem en de discrete tijd van het
embedded controlesysteem in een auto. Sensoren samplen de fysieke eigenschap-
pen van de omgeving periodiek en produceren hier data stromen van. Actuatoren
lezen data uit stromen, waarbij ze deze data periodiek verwachten te ontvangen
van het digitale besturingssysteem. In dit proefschrift concentreren we ons op het
modem systeem binnen autonome auto’s, die wordt gebruikt voor voertuig-naar-
voertuigcommunicatie. Een dergelijk veiligheidskritisch embedded systeem moet
worden geanalyseerd om na te gaan of aan eisen wat betreft timing wordt voldaan.
Tijdens het ontwerp van een dergelijk systeem moeten daarom grenzen worden
afgeleid voor het tijdsinterval dat een real-time systeem nodig heeft om een reactie
te produceren op een gebeurtenis.

Tegenwoordig worden deze embedded systemen vaak geimplementeerd op meer-
dere processoren. De software die op een dergelijk systeem wordt uitgevoerd, is
opgesplitst in taken die zijn verbonden door First-In-First-Out (FIFO) communi-
catiebuffers. Sommige van deze taken worden conditioneel uitgevoerd, afhankelijk
van de waarde van de binnenkomende data. De inkomende gegevens kunnen de
applicatie in een bepaalde modus plaatsen, waarin slechts een deel van de taken
daadwerkelijk wordt uitgevoerd. Run-time schedulers bepalen wanneer een taak
mag worden uitgevoerd op een processor. Helaas hebben de beschikbare analyse-
methoden voor dit soort systemen ernstige tekortkomingen.

Een van de problemen van de analysemethoden is dat de analyseresultaten voor dit
type systemen zijn onvoldoende nauwkeurig. Bovendien is de rekentijd die de ana-
lysemethoden nodig hebben om tot een resultaat te komen vaak onaanvaardbaar
hoog. Bovendien ondersteunen de meeste van deze methoden geen applicaties die
cyclische afhankelijkheden bevatten en dynamische applicaties met conditioneel
uitgevoerde taken.

De analyse van applicaties die cyclische afhankelijkheden bevatten, past van na-
ture bij dataflow-analysetechnieken. Voor dynamische applicaties waarbij taken
worden gepland met behulp van budget schedulers, kan de nauwkeurigheid van
analyse echter laag zijn. Daarom introduceren we locks die extra beperkingen in de
executievolgerde van taken toevoegen in deze dynamische applicaties. Deze locks
voorkomen interferentie tussen taken in verschillende modi, wat de latentie voor
dynamische applicaties kan verminderen.

Om de analyse voor non-starvation-free schedulers mogelijk te maken, introduceren

viii

we ook barriers. Deze schedulers zijn een bredere klasse dan budget gebaseerde
schedulers. De barriers zorgen ervoor dat alle inkomende data van een modus
beschikbaar is voordat taken binnen die modus worden uitgevoerd. De combinatie
van locks en barriers maakt compositieanalyse van modi mogelijk. Dit betekent
dat elke modus afzonderlijk kan worden geanalyseerd, zelfs als deze modi tot een
ander niveau in de hiérarchie van een applicatie behoren. Echter, kunnen bestaande
analysemethoden voor niet-dynamische applicaties voor elke modus afzonderlijk
worden gebruikt.

Voor meer accurate analyseresultaten introduceren we een transformatie van data-
flow-grafen naar timed automata. Met behulp van deze timed automata kan een
nauwkeurige analyse worden uitgevoerd door de correlatie van vuurtijden mee te
nemen, zowel bij opeenvolgende vuringen van dezelfde taak, als tussen verschil-
lende taken. Huidige dataflow-analysetechnieken abstraheren van deze correlatie
door middel van over-approximatie, terwijl we deze correlatie mee kunnen nemen
met timed automata, zonder over-approximatie. Bovendien maken we de analyse
mogelijk van systemen met niet-sequentiele communicatie door tokens met een
token-indexvolgorde te annoteren, in plaats van alleen de token-aankomstvolgorde
te gebruiken. Niet-sequentiele communicatie kan het resultaat zijn van meerdere
uitvoeringen van dezelfde taken in parallel. Door tokens in indexvolgorde te con-
sumeren, is het functionele gedrag van de grafiek orthogonaal ten opzichte van de
aankomstvolgorde van de tokens.

Om de consequenties van onderbreekbare taakplanning op het temporele gedrag
van een applicatie nauwkeurig te analyseren, maken we gebruik van modelcon-
trole van timed automata. Het rechtstreeks modelleren van taakplanning in een
timed automatamodel kan het planningsprobleem onbeslisbaar maken. We pakken
dit probleem aan door een overschatting in het timed automatamodel, of door de
modelcontrole een overschatting te laten maken. De looptijd van de analyseme-
thode is verbeterd door modelcontrole van getimede automaten te combineren met
dataflow-analyse. Bovendien wordt de latentie geminimaliseerd door gebruik te
maken van deze hybride analysemethode, waarbij we extra volgordebeperkingen
introduceren om de interferentie tussen taken te verminderen.

DANKWOORD

Eindelijk is het dan zo ver; mijn promotie komt in zicht, en de laatste hand wordt
gelegd aan dit boekwerk. Vier jaar lang heb ik aan mijn onderzoek morgen werken,
met als eindresultaat dit boekwerk. Deze periode was heel anders dan het jaar wat ik
nu bijna al binnen het bedrijfsleven aan de slag ben. Nu werk ik bij Demcon/Bond
met een groot multidiciplinair team samen aan een groot doel. Bij een promotie
ga je toch meer voor eigen resultaten, uitgedrukt in de vorm van publicaties. Mijn
promotie was dus meer werk op een eilandje. Echter had ik dit niet kunnen doen
zonder hulp of steun. Vandaar dat ik de nodige mensen wil bedanken.

Als eerste Marco, mijn promotor. Lang geleden begon ik mijn afstudeeropdracht
onder jouw supervisie. Niet in de analysetechnieken, maar hardware / chip design.
Ook hier ging het al over het kunnen geven van garanties, de “rotonde met stoplich-
ten”, maar dan voor latency voor de communicatie binnen een chip. Hier heb je mij

toch langzaam overtuigd van de analysewereld. Deze hemel waarin alle componen-
ten zich ideaal gedragen. Terwijl er in de echte wereld onverwacht, vanalles mis kan

gaan, en aannames die je maakt ineens niet meer op kunnen gaan. Jouw diepgaande

technische kennis zorgde dat we elke discussie weer een stapje verder kwamen rich-
ting een paper. Daarnaast kan ik ook jouw uitgebreide feedback waarderen op het
minst favoriete onderdeel van de promotie, het daadwerkelijk opschrijven van de

onderzoeksresultaten. Dit is vooral knap gezien je maar part-time, één dag in de

week, professor bent bij CAES naast je reguliere werk bij NXP. Wat voor type sche-
duler wordt er voor deze Marco resource gebuikt om je tijd zo te verdelen tussen
de vele promovendie en afstudeerders? Parallellisatie zou dit scheduling probleem
een stuk makkelijker, maar is in dit geval lastig te implementeren zolang het klonen

van mensen nog niet echt een ding is.

Hiernaast zijn er meer mensen die zich inhoudelijk met mijn promotie bezig heb-
ben gehouden. Philip, Joost, en Stefan waren de dataflow experts bij CAES die mij
goed geholpen hebben met mijn papers, ook al zaten jullie ver weg in Einhoven bij
NXP, wat de samenwerking er niet makkelijker op maakte. Als we dan wel een keer
bij elkaar zaten bij de SCOPES conferentie, hadden jullie veel feedback op mijn
conferentiepresentatie. Dit commentaar heb ik toen een paar uur voor mijn pre-
sentatie nog meer net allemaal kunnen verwerken voordat ik de echte presentatie
mocht houden. Daarnaast was Robert met zijn dataflow expertise wel altijd in de
buurt, en had hij altijd een interresant dataflow probleem om de tijd mee te vullen.
Ook de afstudeerders; Oscar, Viktorio, Daniel, Mark en Oguz, mag ik niet vergeten.
Al waren jullie onderzoeken niet direct relavant voor mijn promotie, jullie mogen
begeleiden was wel een leuke afwisseling op mijn eigen onderzoek.

Naast de inhoudelijk ondersteuning bracht mijn vakgroep, CAES, nog zoveel meer.
Met Gerard aan het hoofd van de vakgroep was CAES een gezellige groep om deel
van uit te maken, waar ik 5 jaar lang met veel plezier heb gezeten. Vooral de vrijdag-
middagborrels en koffiepauzes waren een goede manier om vernieuwde inspiratie
op te doen. Vooral dankzij de inzet van Gerwin. De secretaresses, Marlous, Ni-
cole en Thelma, ook bedankt voor de ondersteuning, vooral bij het regelen van
de conferentiereizen. Ook Jochem verdient een bedankje voor de template voor
dit boekje. Deze is verder ontwikkeld en beschikbaar gemaakt op Github voor de
geinteresseerden’.

Wat misschien nog wel het belangrijkste is aan een promotie, is alles er omheen. Je
hoofd leeg maken, wat bij mij goed ging door te gaan sporten. Dankzij de vele Mes-
sed Uppers heb ik de problemen van de promotie aan de kant gezet bij trainingen,
wedstrijden, toernooien en feestjes. Net als bij een promotie zijn hier zo de up en
downs (hebben we dit seizoen al een wedstrijden gewonnen in de Eredivisie?). De
vakantie en etentjes met de vrienden uit Doetinchem, EJ, Hans, Martin, Niels en
Tjerk, zorgden voor de nodige afleiding. Wat is er beter dan inspiratie op doen met
jullie op een strand in Bali, of tussen de vogels in een mangrovebos in Senegal? Ook
de nieuwe collega’s bij DEMCON/Bond zorgen voor een leuke werksfeer zodat het
ook niet zo erg is om ’s avond de laatste loodjes van mijn proefschrift kan afronden.

Als laatste wil ik mijn familie nog bedanken. Pap, en mam, ook al snappen jullie
totaal niet waar ik me de afgelopen 4 jaar mee bezig heb gehouden, toch waren jullie
altijd geinteresseerd in mijn onbegrijpbare verhalen. Luc, jij stond altijd klaar bij
Gringo’s om mij aan de drank te helpen, als ik dat weer eens nodig had. Donna, jij
hebt vast wat van je overvloedige energie aan mij overgedragen om mijn promotie
af te kunnen ronden. Nienke, zonder jou was ik vast niet zo ver gekomen met
mijn promotie, had ik een saaie foto op de cover gehad, zaten er nog veeeel meer
spelfouten in dit boekje,

Guus
Enschede, januari 2019

'https://github.com/gkuiper/phdthesis-template

https://github.com/gkuiper/phdthesis-template

CONTENTS

INTRODUCTION
1.1 Cyber-Physical Systems
1.2 Real-time systems
1.2.1 Run-time scheduling
1.2.2 Analysis of run-time scheduling
1.3 Problem statement
1.4 Contributions
1.5 Outline
BACKGROUND
2.1 Model checking
2.1.1 Transition systems
2.1.2 Reachability analysis
2.1.3 Bisimulation
2.1.4 Timed automata
2.2 Dataflow models
2.2.1 Properties of dataflow models
2.2.2 More expressive dataflow models
2.2.3 Analysis
2.3 Analysis models for concurrent systems
2.4 Summary

ENFORCING MUTUALLY EXCLUSIVE TASK EXECUTION IN MODAL

APPLICATIONS

3.1 Related work

3.2 Basicidea

3.3 Types of mutual exclusivity

3.4 Response times TDMA

3.5 Real-time lock implementation

3.5.1 Realization
3.5.2 Code Generation

)

o O\ A

10
11

12

15
16

17
18

19
21

25
27
28

30
31
33

35
37
39
43
44

45
45
48

SINALNOD)

3.5.3 Deadlock-freedom
3.6 SVPDF model
3.7 Lock from sequential specification
3.8 Case study

3.9 Conclusion

COMPOSITIONAL ANALYSIS OF MODES AND FPP SCHEDULING
4.1 Related Work
4.2 Basicidea

4.3 Analysis flow
4.3.1 Flattening of a hierarchical level

4.4 Periodic source constraints

4.5 Response times
4.5.1 Mutual exclusive execution using locks

4.6 Response times larger than period
4.7 Case study

4.8 Conclusion

LATENCY ANALYSIS USING TIMED AUTOMATA
5.1 Related work

5.2 The HSDF® model

5.3 Max-plus Semantics of HSDF*

5.4 Extended timed automata

5.5 Timed automata model of HSDF* graphs
5.5.1 Uppaal components
5.5.2 Dataflow edge model
5.5.3 Actor model
5.5.4 Complete automaton of an HSDF” graph
5.5.5 Integer clock constraints

5.6 Case study

5.7 Conclusion

51
52
53
55
58

61
63
64

67
69

72

73
74

76
77
82

85
87
87
89
91

92
92
93
95
97
98

98

101

6 HYBRID LATENCY ANALYSIS

6.1
6.2
6.3
6.4

6.5

6.6
6.7

6.8
6.9

Introduction
Related work
Basic idea

Timed automata

6.4.1 FIFO buffer

6.4.2 Task template

6.4.3 Processor template

6.4.4 Verification

Timed-dataflow

6.5.1 Deadlock

6.5.2 Minimum guaranteed throughput
6.5.3 Approximative dataflow analysis

Hybrid analysis
Sequence constraints

6.7.1 Negative tokens
6.7.2 Redundant constraints

Case study

Conclusion

7 CONCLUSION

7.1
7.2
7-3

Summary
Contributions

Recommendations for future work

ACRONYMS

SYMBOLS

BIBLIOGRAPHY

LisT OF PUBLICATIONS

INDEX

105
105
107
109

110
110
110
112
113

113
113
114
114

115

116
119
119

121

125

127
128
129

131

135

137

139

147

149

xiii

CONTENTS

Xiv

INTRODUCTION

Cars have had no radical changes to their design for decades, until recently. Fossil
fuels are running out quickly, which leads to the need to use renewable energy
sources. As a result, electrical cars have started to emerge. The next major innova-
tion in the automotive industry will likely be autonomous driving.

The trend to increase the level of autonomy of cars imposes great challenges to their
design. There is a very complicated interaction between the physical environment,
sensors observing the environment, the hardware and software processing these
observations and taking actions, and the actuators of the car. The interaction be-
tween these components, in for example autonomous cars, results in a system that
is known as a Cyber-Physical System (CPS).

An increasing amount of data is processed by cars in order to provide a certain
level of autonomy. Sensors in cars produce this data by observing the environment.
However, more intelligent autonomous cars also take advantage of communication
with nearby vehicles. These cars are equipped with vehicle-to-vehicle communica-
tion systems, like the one shown in Figure 1.1. In this thesis we will focus on the
modem subsystem of these vehicle-to-vehicle communication systems.

There are very strict demands on the temporal behavior of the modem system in
autonomous cars, since these cars are safety-critical systems. Incorrect or too late
decisions can have disastrous consequences. Using the vehicle-to-vehicle commu-
nication system, a car must respond quickly to a sudden braking action of a closely
preceding car, to prevent collisions. During the design of such a modem subsys-
tem, we want to provide guarantees about the worst-case temporal behavior of
that subsystem. In this thesis we will therefore describe new models and analysis
techniques that can be used to provide such temporal guarantees.

The modem application is computationally intensive, since it has to deal with rapidly
changing channel conditions. Therefore, the modem is usually implemented on a

NOLLONAOYIN] — T HALAVHD) &

[2a) Figure 1.1: A shark fin shaped modem system of WISI Automotive for vehicle-
to-vehicle communication (Photo by Business Wire).

multiprocessor system. In this thesis we will analyze applications that are imple-
mented on such multiprocessor systems.

The outline of this chapter is a follows. CPSs are described in more detail in Sec-
tion 1.1. We then expand upon the digital processing part of these CPSs that must
satisfy temporal constraints in Section 1.2. There, we also compare existing analysis
approaches for these type of systems and their shortcomings. The main problem
addressed in this thesis is formulated in Section 1.3. The contributions of this thesis
towards improving the analysis methods are summarized in Section 1.4. Finally,
the outline of this thesis is presented in Section 1.5.

1.1 CYBER-PHYSICAL SYSTEMS

The applications we are targeting in this thesis receive their incoming data from the
environment, process it, and transmit the corresponding output back to the envi-
ronment. The data is often processed on an embedded system, which is a computer
system designed for a specific application. The interaction between the physical
environment and the computational part in the form of an embedded system forms
a CPS.

ﬁ@# embedded

! system
Byl) ol | eyper (| ebedded o
environment | | system
| B
1 u X%

0

actuators ‘<— @

4

(a) The components that construct a Cyber-Physical System: phys- (b) The embedded sys-
ical environment, sensors, embedded system and actuators. tem within a CPS

[2a] Figure 1.2: An overview of the components of a Cyber-Physical System (CPS)
(a) and the embedded system inside a CPS (b).

A Cyber-Physical System is defined as:
A computing system that is tightly coupled with its physical environment,
where algorithms running on the computing system interact with the physical
environment, based on the inputs received from sensors measuring properties
of the physical environment.

Such a CPS encompasses both the continuous-time domain of the physical environ-
ment, and a discrete-time domain in the embedded system. On the boundaries of
these two domains, a conversion is made from continuous-time signals to discrete-
time signals and vice versa. A sensor performs the task of converting a continuous
time signal to a discrete signal. The continuous-time signals are sampled by a
sensor periodically: a sample is taken from the continuous-time signals at equal
intervals of time. An actuator receives a discrete-time signal and transforms it
into a continues-time signal. Hence, sensors and actuators perform the opposite
conversion. Figure 1.2a shows how these components together form a CPS.

In this thesis we focus especially on modem applications for vehicle-to-vehicle com-
munication. The wireless communication channel is the physical environment in
this type of CPSs. The modem consists of both a receiver and transmitter, where the
receiver decodes samples produced by an Analog-to-Digital Converter (ADC) and
the transmitter encodes samples, which are sent to a Digital-to-Analog Converter
(DAC).

We consider embedded systems that execute stream processing applications. This
are applications that process endless streams of samples. Internally, a stream pro-
cessing application can be subdivided into tasks, as shown in Figure 1.2b. Each task

& SecTion 1.1 - CYBER-PHYSICAL SYSTEMS

NOILLONAOYLN] — T 44LdVH)) E

performs a part of the stream processing application. The output of a task, which
thus forms an intermediate result of the application, is typically communicated to
other tasks using First-In-First-Out (FIFO) buffers. One task writes data into the
buffer, whereas another task reads data from it. In case there is insufficient data in
the buffer, the task that reads is blocked; i.e. it has to wait until data arrives before it
can continue to execute. Moreover, these FIFO buffers have a finite size, such that a
task that wants to write data into a buffer is blocked in case the buffer is already full.
These finite-sized buffers therefore create cyclic dependencies in applications. The
advantage of using FIFO buffers is that they allow for functionally deterministic
exchange of data.

The applications we consider are either static or dynamic. In the static case, the
rate at which tasks in the application execute is determined by the sample rate of
the sensors. However, in the dynamic case, tasks can be executed conditionally.
Tasks are said to execute conditionally if the values of the incoming data determine
whether the tasks will actually execute or not. A task that does not execute, also
does not produce data into its output buffers. The behavior of dynamic applications
can therefore change depending on the physical environment. These dynamic
applications are also called modal applications, because the execution of tasks can
depend on previously received data, which puts the application in a particular mode.
In this thesis we will consider both modal applications and static applications.

Although the use of FIFO buffers in applications itself can result in functionally
deterministic behavior, this does not hold for the buffers at the boundaries of the
application. Buffers that are filled by sensors, or read by actuators behave differently.
These sensors and actuators execute time-triggered, instead of tasks that execute
data-driven. These two execution schemes, time-triggered and data-driven execu-
tion, are discussed in more detail in the next section. If the throughput constraint
that is imposed by these sensors and actuators is not fulfilled, buffer overflows or
underflows can occur. A buffer overflow results in loss of samples. In case of a
buffer underflow, the last sample is repeated. These buffer overflows and under-
flows lead to undesirable functionally non-deterministic, and thus unpredictable,
behavior. The embedded system is therefore subjected to throughput constraints,
which makes this system a real-time system. Real-time systems are discussed in
more detail in the next section.

1.2 REAL-TIME SYSTEMS

The type of embedded systems we address in this thesis must satisfy strict temporal
constraints. These systems are therefore real-time systems.

A real-time system is defined as:
A system of which the correctness of their results not only depends on the values
as an outcome of a computation, but also on the moment in time at which
these values are produced.

In such a real-time system, tasks are characterized by the time it takes to perform
one execution, which is called the execution time of a task. An execution of a
task may start when there is sufficient data for a task to read from all its input
buffers. After a task finishes its execution, data is written to its output buffers. The
execution time of a task is typically not a constant. Therefore, an upper bound
on the execution time is specified. This upper bound is called the Worst-Case
Execution Time (WCET). The Best-Case Execution Time (BCET) is a lower bound
on the execution time of a task.

In this thesis we consider embedded systems with multiple processors such that
sufficient computational performance is available to meet temporal requirements.
Tasks can either execute on different processors in parallel, or some tasks can ex-
ecute interleaved in time on the same processor concurrently. A scheduler deter-
mines the moment in time at which a task is executed on a processor. We consider
systems where tasks are scheduled on a per-processor-basis, therefore there is a
scheduler for each processor. The assignment of tasks to processors is performed
at design-time, before the application is executed on a multiprocessor system.

Two task scheduling policies exist: time-triggered and data-driven. In time-trig-
gered scheduling policies, the start of an execution of a task is performed based
on a timer. For data-driven schedulers, scheduling is performed based on the ar-
rival of data. In the latter case, the application is less sensitive to variations in the
execution times. A sporadic longer execution of a task can in some cases be com-
pensated by shorter consecutive executions to still meet the temporal constraints
on the execution of the application. Such an aperiodic, data-driven, scheduling
policy can exploit a tighter workload characterization of tasks than the WCET char-
acterization [Hauis] . In this thesis we develop techniques that exploit these tighter
workload characterizations.

Many real-time applications contain cyclic dependencies. These cyclic dependencies
can be a result of feedback loops and the use of bounded FIFO buffers for inter-task
communication. These cyclic dependencies can bound the number of concurrent
executions of tasks on the cycle. Although these cyclic dependencies can result in
better analysis results, they complicate the analysis of real-time systems.

Analysis of a real-time system is required in order to verify whether the system
satisfies its temporal constraints. Therefore, we need to analyze systems with the
combination of tasks with: cyclic dependencies, variable execution times, parallel
execution of tasks, and the effect of run-time scheduling. A temporal constraint
of the system can be in the form of a maximum latency. The latency is the time
difference between the time at which a sample was produced by a sensor and the
corresponding sample was consumed by an actuator.

Sensors often produce samples periodically, and therefore impose a throughput
constraint on the real-time system. This means that the throughput of each individ-
ual task, as well as the combined throughput of all communicating tasks, should
be verified for satisfying the throughput constraint. Analysis models for real-time

& SEcTION 1.2 - REAL-TIME SYSTEMS

NOILLONAOYLN] — T 44LdVH)) E

Budget

Starvation-free

\ /

Non-starvation-free

AN /

2] Figure 1.3: Classes of run-time schedulers.

systems that can express the combination of tasks with cyclic dependencies, vari-
able execution times, and that include the effect of scheduling, are discussed in
Chapter 2. In that chapter, we also address the analysis of these models.

1.2.1 RUN-TIME SCHEDULING

A scheduler performs arbitration for a shared resource, a processor in this case,
using a certain scheduling policy. In this section, we introduce three classes of
schedulers for real-time systems. After this introduction, we compare existing
analysis approaches for these systems and the techniques behind these approaches
in Subsection 1.2.2.

A task that is ready to start its execution on a processor can be delayed by the
scheduler if other tasks also want to execute on the same processor. This delay
caused by other tasks is called interference. The response time of a task is the time
between the moment a task is ready to start an execution and the finish time of that
execution. The response time thus consists of both the execution time of the task
and the interference caused by other tasks.

In [WBSog], three classes of run-time schedulers for real-time systems are defined:

1. Budget schedulers
2. Starvation-free schedulers
3. Non-starvation-free schedulers
The relation between these three classes of schedulers is illustrated in Figure 1.3.

Budget schedulers are the least general class of schedulers, whereas non-starvation-
free schedulers are the most general class in Figure 1.3.

These classes of schedulers can be distinguished based on the amount of knowledge
that is required about the tasks that are being scheduled, in order to bound the

interference between tasks. The three classes can be distinguished based on two
properties:

1. Execution times of all tasks sharing the same resource

2. Rate of execution of all tasks sharing the same resource

The execution time of a task is the time the task needs exclusive access to the proces-
sor to finish an execution. The execution rate of a task is the number of executions
of a task during a certain time window.

Budget schedulers are the most restrictive class of schedulers we consider. The
advantage of schedulers in this class is that no knowledge about execution times
and execution rates of other tasks is required to provide a bound on the interference
between tasks. An example of a budget scheduler is the Time Division Multiple
Access (TDMA) scheduler. A budget scheduler assigns a minimum time budget
to each task within a maximum time interval, the replenishment interval. During
each interval, every task can execute for the duration of their assigned time budget.
The sum of the budgets of all tasks logically adds up to the entire replenishment
interval. The maximum interference a task can experience can therefore be derived
independently for every task, i.e. without knowledge of the execution time and
execution rate of other tasks.

The starvation-free schedulers belong to a larger class of schedulers. For these
schedulers, only knowledge about the execution time of other tasks is required
to upper bound the interference. The Round-Robin (RR) scheduler is the best
known scheduler of this class. For a RR scheduler, all tasks may execute once,
in a predefined order, until they are finished, after which this sequence repeats.
For this reason, all other tasks can execute at most once, before the task under
consideration is executed. Therefore, knowledge of only the execution times is
sufficient to determine the maximum interference.

The broadest class of schedulers is the class of non-starvation-free schedulers. Both
the execution time and execution rate of other tasks are required to determine
the interference between tasks. A well known scheduler inside this class is the
Fixed Priority Pre-emptive (FPP) scheduler, which arbitrates tasks based on their
priority. A task with a higher priority that becomes ready to execute, pre-empts a
lower priority task, to quickly get access to the processor. The task with the higher
priority causes interference on the lower priority tasks that are thereby delayed.
Without knowledge about both the execution time and execution rate of all tasks
with a higher priority, the worst-case situation is that a low priority task must wait
indefinitely before its execution can start.

Out of these three classes of schedulers, systems with budget schedulers and star-
vation-free schedulers are relatively easy to analyze. However, in practice many
real-time systems make use of non-starvation-free schedulers, although the use of
these schedulers draatically complicates system analysis. System designers are often
unaware of the consequence on the analysis of using non-starvation-free schedulers.
In this thesis we focus on non-starvation-free schedulers.

g SECTION 1.2.1 - RUN-TIME SCHEDULING

NOILLONAOYLN] — T 44LdVH)) E

B8 Table 1.1: Comparison of analysis methods for systems with non-starvation-free
schedulers.

¢ o
% & &
& & g
5 () oy :
S § ¥ o F
& £ ¢ 5 @
& - e 0 A
e & v ¥ Fy & ¢

S O £, q§ S e

T ¥ §F & : S

s L £ § & §5 O

Analysis method SN (AN QY & <

MAST [HGGMo1] + + - - - + -
SymTA/S [HHJos5] + + - - - + B
MPA-RTC [TSoo] + + - - - + -
MPA-RTC UPTYo8] + - + - - o+ -
Dataflow [KHB16a] + + + + - ++ +-
Timed automata [HVo6] + + - - - - +
TIMES [AFM*03] - + + - - - n
Our approach this thesis ~ + + + + +- - ++

1.2.2 ANALYSIS OF RUN-TIME SCHEDULING

There are two main categories of analysis techniques for systems with non-star-
vation-free schedulers. The first computes a fix-point, and the second uses model
checking, which is based on reachability analysis. In this section, we briefly in-
troduce both categories of analysis techniques, and give a comparison of analysis
approaches that utilize these techniques.

Many analysis approaches have been developed for the analysis of systems with
non-starvation-free schedulers. Table 1.1 presents a number of these approaches
and highlights system features that are supported (+) or not supported (-). The table
also presents a rough estimate of their run-time and accuracy within the range of

‘very good’ (++) to ‘very bad’ (--). The run-time and accuracy of these approaches

is heavily dependent on the system being analyzed, as is shown using a benchmarks
for a number of approaches in [PWT*o7].

Most of the fixed-point based analysis approaches are not able to analyze arbi-
trary task graphs. Especially cyclic data dependencies are problematic for MAST
[HGGMoz1], SymTA/S [HHJ" 05], and MPA-RTC [TSog]. MPA-RTC has been ex-
tended to support either cyclic data dependencies [TSog], or cyclic resource depen-
dencies [JPTYo08], but the combination of both is not yet supported.

Dataflow based analysis is suitable to analyze graphs that contain cyclic dependen-
cies [Daso4, SBog]. These dependencies can even be exploited to obtain tighter an-
alysis results using buffer sizing techniques [WGHB15]. Schedulers cannot be mod-
eled directly in dataflow models unless the schedule is static [DSB*13]. However, the

effect of scheduling can be included in dataflow models. This was first shown for the
class of budget schedulers [WBSo9, LMCi2]. Recently, the class of supported sched-
ulers has been extended with non-starvation-free schedulers [HWGB13, HGWB14,
LMB™14]. The dataflow analysis approaches also compute fixed-points. We focus
on dataflow analysis in this thesis, since it supports the most system features as
shown in Table 1.1. Moreover, cyclic data dependencies analysis and buffer sizing
techniques have been developed that improve the accuracy of the analysis results.

Timed automata based approaches [HVo06, AFM* 03] are based on model check-
ing, which uses reachability analysis. TIMES [AFM™ 03] is an analysis tool that
internally uses timed automata for the analysis of systems with non-starvation-free
schedulers. However, it currently does not support systems with multiple proces-
sors. These timed automata based approaches produce accurate analysis results,
but in general suffer from a large state space and therefore their run-time can be
impractically large.

Before we state the differences between the two categories of analysis approaches,
we need to explain fixed-point based analysis in more detail. A fixed-point is a
value x of a function f for which f(x) = x. Loosely speaking, the least fixed-point
of a function is the smallest value x for function f that is a fixed-point. Kleene’s
fixed-point theorem states that the unique least fixed-point of a Scott-continuous
function can be computed by iteratively calling the function, starting at the least
possible value. A function is Scott-continuous iff it preserves directed suprema. A
Scott-continuous function is by definition also a monotonic function.

Functions can either be monotonic or non-monotonic. A function f is monotonic
iff it is either entirely non-increasing, or entirely non-decreasing. As a results,
there are two possible types of monotonic functions: for monotonically increas-
ing functions, we have that V;5;: f(i) > f(j), and for monotonically decreasing
functions, we have that V;5;: f(i) < f(j). A function that does not satisfy any
of these two conditions is non-monotonic. However, an approximation of such a
non-monotonic function can be a monotonic function.

For the analysis of systems that include schedulers, we are interested in the fixed-
point of the function that calculates the interference a task can experience. Given
a monotonic function for the maximum interference, the maximum interference
is obtained by iterating the function starting with zero interference [TBWo4]. This
iterative computation of a fixed-point is often relatively fast. However, in general,
the interference function is non-monotonic, and a monotonic over-approximation
of the function needs to be constructed, before a fixed-point can be calculated.

Fixed-point based analysis approaches rely on abstracting from scheduling in order
to create a monotonic model. Also non-determinism in an application, for example
in the execution times of tasks, can be hidden using abstractions. This creates a
bounding abstraction where only a worst-case and best-case bound of the system
are analyzed [KB1y]. These two bounds must include all possible behaviors of the
system, since a monotonic over-approximation of the system is analyzed. Asa
results of these bounding abstractions, the analysis is computationally efficient.

E SECTION 1.2.2 — ANALYSIS OF RUN-TIME SCHEDULING

NOILLONAOYLN] — T 44LdVH)) E

However, this efficiency of the analysis approaches based on the computation of
fixed-points, comes with a potential loss of accuracy.

On the other hand, timed automata [AD94] do allow analysis of non-monotonic
behavior and the expression of non-determinism. As a result, non-starvation-free
schedulers can be modeled in timed automata. More accurate analysis can there-
fore be performed by model checking of these timed automata. The exact analysis
of systems with the combination of pre-emptive schedulers, dependencies between
tasks and non-constant execution times, as described in more detail in Chapter 6,
is an undecidable analysis problem. Therefore, timed automata based analysis ap-
proaches also need to perform approximations to prevent undecidability. Since
the analysis is performed on a system with non-monotonic components, it is insuf-
ficient to only analyze the worst-case and best-case behavior of each component.
Therefore, all behaviors of the system must be included in the inclusion abstraction
of the system [KB1y]. This can lead to a traversal of a very large state space. While
model checking of timed automata can lead to more accurate analysis results than
analysis approaches based on the iterative computation of a fixed-point, the large
state space causes it to be computationally intensive.

The comparison presented in this section shows that the holy grail of analysis ap-
proaches, for systems with non-starvation-free schedulers, does not exist. Current
analysis approaches are not able to accurately analyze applications that contain
arbitrary cyclic dependencies. Moreover, dynamic applications are also not consid-
ered by these approaches. Both fixed-point based approaches as well as reachability
analysis using model checking have their advantages and disadvantages. A purely
timed automata based analysis approach can analyze systems with non-monotonic
behavior and non-determinism with a high accuracy, at the cost of a long run-time.
The abstractions required to efficiently compute fixed-points iteratively, lead to a
low accuracy of the fixed-point based approaches. This low accuracy, however, can
be improved by exploiting cyclic data dependencies using dataflow analysis tech-
niques. In this thesis we address these issues by combining dataflow bases analysis
with model checking of timed automata.

1.3 PROBLEM STATEMENT

So far, we have introduced the type of systems that we address in this thesis: CPSs,
of which we are interested in the real-time embedded system part. The implemen-
tation of the real-time system is targeted towards multiprocessor systems, where
tasks are scheduled at run-time. Many analysis approaches exist for this type of
systems, however, each approach has its downsides such as the restriction on the
class of supported system features, a low accuracy or a very high run-time.

Therefore, the research problem that is addressed in this thesis is to:

Define techniques that improve the accuracy of the real-time analysis results,
and also increase the class of real-time multiprocessor systems and applica-

tions that can be analyzed, while minimizing the run-time of the analysis
algorithms.

Besides improvements of the analysis techniques, we also consider improvements
to applications by adding locks and barriers that introduce so called sequence con-
straints. These sequence constraints limit the possible orders in which tasks can
execute. As a result of these sequence constraints, the analysis can be simplified
and the throughput, latency and accuracy can be improved.

This thesis describes dataflow analysis techniques for dynamic applications exe-
cuted on multiprocessor systems with non-starvation-free schedulers. Further-
more, we show that a subclass of dataflow models can be modeled as timed au-
tomata. From the analysis results, it can be concluded that by applying model
checking techniques, more accurate results can be obtained at the cost of a longer
run-time. However, it also became apparent that it is impossible to guarantee exact-
ness of the results for the considered analysis problem. Moreover, we will present
an analysis technique that combines dataflow analysis and model checking that re-
duces the run-time without sacrificing accuracy. The work described in this thesis
will also help to better understand the relation, similarities, and differences between
model checking and dataflow based temporal analysis approaches.

1.4 CONTRIBUTIONS
The contributions presented in this thesis are:

» Techniques to improve the throughput of modal applications on multipro-
cessor systems with budget scheduler by introducing a lock.

» Techniques to enable the analysis of dynamic applications on multiprocessor
systems with non-starvation free schedulers, by introducing a barrier.

» Techniques to improve the analysis accuracy of static applications on sys-
tems without run-time schedulers by introducing a transformation of data-
flow into timed-automata model.

» Techniques to improve the analysis accuracy of static applications on sys-
tems with run-time schedulers by introducing a model of the run-time
scheduler in timed automata. To achieve this, we encountered the issue
that over-approximation must be applied to create a timed automata model.
We observed long run-times especially when model checking methods were
applied for buffer sizing.

» Techniques to reduce the run-time of buffer sizing using model checking
by proposing a combination of model checking with dataflow analysis to
prune the search space.

» Techniques to reduce the latency by proposing techniques to insert addi-
tional sequence constraints.

11

& SectiON 1.4 - CONTRIBUTIONS

NOILLONAOYLN] — T 44LdVH)) E

Summarizing; in this thesis we introduce real-time analysis techniques for static as
well as dynamic applications. The analysis makes use of dataflow models and timed
automata, and combines them to reduce the run-time of the analysis algorithms.
Furthermore, additional sequence constraints are derived that improve the analysis
results.

1.5 OUTLINE

The analysis models used in this thesis, dataflow and timed automata, are intro-
duced in Chapter 2, together with our view on the relation between these models.
Chapter 3 introduces a lock to allow efficient analysis and resource usage when
budget schedulers are used. Chapter 4 extends the analysis to the more general
class of non-starvation-free schedulers by introducing barriers. The combination
of locks and barriers allows hierarchical modes to be analyzed in isolation.

The subsequent part of this thesis addresses temporal analysis where we only con-
sider a single mode. In Chapter 5, we improve the accuracy of the analysis of
applications modeled as dataflow graphs by transforming the graphs into timed
automata, which are model checked. Chapter 6 introduces a hybrid analysis flow,
which combines computationally efficient dataflow analysis with model checking
of timed automata. Additional sequence constraints are introduced in applications
in order to reduce the latency.

Finally, Chapter 7 presents the conclusions of this thesis and gives recommenda-
tions for future work.

13

14

BACKGROUND

Concurrent real-time applications running on multiprocessor systems are difficult
to analyze. In 1965, Dijkstra identified one reason which is mutual exclusion [Dij65].
A classical example which illustrates issues caused by mutual exclusion, also by
Dijkstra, is the dining philosophers problem. All philosophers sitting around a
table should be able to alternate infinitly between thinking and eating, while sharing
resources.

In order to analyze this interleaving of concurrent processes that together form an
entire system, the system could be modeled in an analysis model. Analysis on such
a model is used to analyze functional behavior such as deadlock, starvation and
determinism. Next to the functional correctness, temporal behavior is crucial for
real-time systems, and should also be verified using these analysis models.

Since we are interested in functionally correct systems, we restrict the systems
we want to model to concurrent processes that communicate using FIFO buffers
[Dij72]. This is opposed to systems that communicate using shared memory and
requiring sort of locking, to guarantee mutual exclusive access to data structures,
which prevents race conditions. Processes do not have any side-effects, except the
interaction with buffers, and can only update their own state.

Throughout this thesis we use two timed analysis models: dataflow models and
timed automata. The expressiveness of dataflow models is restricted, however, data-
flow models can be analyzed efficiently. On the other hand, timed automata are very
expressive, and many properties can be derived from them using model-checking.
Since model-checking is based on state space exploration, and the state space is
often large, the analysis of timed automata is less efficient and costs a large run-time.

In dataflow models, concurrent processes are specified as actors. Dependencies
between these processes are represented by edges connecting actors. Together, these
actors and edges form a directed graph. Cyclic dependencies in such a graph can

ANNOYDAOVY — T d4LdVH)) E

be used to bound the number of concurrent executions of actors on the cycle.

Each timed automaton executes sequential, however, multiple timed automata can
execute concurrently. These timed automata communicate using so called hand-
shaking actions. Communicating timed automata execute in parallel. A supervising
scheduler can be modeled using timed automata, which grants access to a shared
resource in a concurrent multiprocessor real-time system.

The two analysis models used in this thesis are discussed in more detail in this
chapter: model checking of timed automata in Section 2.1 and dataflow models in
Section 2.2. We use dataflow models throughout this entire thesis, whereas model
checking of timed automata is relevant for Chapter 5 and Chapter 6. Furthermore,
in Section 2.3 we compare the expressiveness of these two analysis models and place
them in perspective to other related models.

2.1 MODEL CHECKING

Formal verification of safety-critical systems using model checking [CE81] is becom-
ing increasingly popular. The verification process using model checking is fully
automated by tools like UppaaL [DILSog], in contrast to providing proofs manu-
ally. Model checking usually requires the following steps: creation of a model of a
system, simulation of the model, and finally formal verification of this model. A
convenient representation of the model is in the form of graphs, as is the case for
timed automata. Simulations of such a model can be used to compare the behavior
of the model with the behavior of the system. If these differ, a revision of the model
is required. The formal verification using the model consists of analyzing the state
space of the model for certain properties specified in a temporal logic like Compu-
tation Tree Logic (CTL) [CE81]. When a property does not hold, a counterexample
can be returned by the model checker [CGMZgs].

To understand model checking for real-time systems, we first consider the math-
ematical basis for model checking: transition systems. Then we discuss how to
analyze these transition systems using reachability analysis. However, reachability
analysis is not guaranteed to terminate for transition systems that include continu-
ous time. Bisimulation is an equivalence relation between two transition systems;
it can be used to prove that an abstraction with a finite state space exists of a system
with an infinite size. The finite state space is the result of partitioning the continu-
ous time of the state space into a finite number of regions, which together form a
regions graph. Finally, timed automata are introduced based on these concepts. For
timed automata a finite region graph can always be constructed, such that reacha-
bility analysis is guaranteed to terminate. We use timed automata later on in this
thesis to analyze concurrent real-time multiprocessor systems.

2.1.1 TRANSITION SYSTEMS

Computations of discrete systems can often be described as states with transitions
between them. Such a transition system can formally be described as a directed
graph, T = (S, Act, —, Sp) where:

» S is a set of states
» Act is a set of actions
» — C 8§ x Act x § is a transition relation

» So C S is a set of initial states

In the directed graph, the nodes are represented by the states and the edges are the
transitions between different states.

A transition system starts in one of its initial states s € Sy. In case there are mul-
tiple initial states, an initial state is selected non-deterministically from S,. From
there, the state of the system evolves to subsequent states according to the possible
transitions — in the system. A current state s transitions to a next state s’ follow-

ing the transition s — s". During the transition the action & € Act is performed.
Again, when there are multiple transitions possible from s, one of them is selected
nondeterministically. This nondeterminism is crucial to describe concurrent sys-
tems [BKLo8].

The set S and Act of a transition system is not required to be finite. However, for
the transition system T to be finite, the size of S and Act must be finite.

For a transition system we can define the direct successors and predecessors of a state
s € S as Post(s) and Pre(s).

Post(s, &) = {s' €S|s > s'} (2.1)

Post(s) = |J Post(s,a) (2.2)
acAct

Pre(s,a) = {s' eSls’ S s} (2.3)

Pre(s) = |J Pre(s,a) (2.4)
acAct

This can be extended to sets of states C C S.

Post(C) = | Post(s) (25)
seC

Pre(C) = |J Pre(s) (2.6)
seC

Using these definitions, a ferminal state is defined as Post(s) = @. The set of
terminal state Sy it holds that Post(Sy) = @. A transition system is deterministic if
it holds Vs, & : |[Post(s,)| <land |S¢| < L.

17

& SEcTION 2.1.1 - TRANSITION SYSTEMS

ANNOYDAOVY — T d4LdVH)) E

Algorithm 1: Forward reachability

1 Input: S, S, S
. Initialization: Wy = Sy, i = 0;

5 repeat

4 if W;nSs + @ then

5 L return Sy reachable
s Wi = Post(W;) u Wi
7 i=i+1;

s until W; = W;_j;
o return Sy not reachable

2.1.2 REACHABILITY ANALYSIS

Properties of a transition system can be verified by reachability analysis. An error
condition of a system can be encoded as a certain state in a transition system.
Analysis on the transition system is used to conclude whether that state is reachable,
and thereby conclude that the error can occur in the system. More sophisticated
system properties may be specified in logic such as CTL, however, this is outside
the scope of this thesis, but is explained in [BKLo8]. We now focus on two simple
reachability algorithms.

We discuss two reachability analysis algorithms that can be used to determine if
a terminal state in Sy can be reached. One is the forward reachability algorithm
whereas the other is the backward reachability algorithm. Both algorithms guar-
antee termination given finite transition systems. These reachability algorithms
are modifications of standard graph traversal algorithms like Breadth-First Search
(BES) or Depth-First Search (DFS). These algorithms can further be extended to
return a counter-example, showing the path to the terminal state in case it is reach-
able.

The forward reachability algorithm, see Algorithm 1, starts with the set of initial
states Sy which is copied in the set Wy. This set is gradually extended during each
iteration i of the algorithm with the successor states of that current set and stored in
W; using Post(W;), as defined in Equation 2.5. The algorithm terminates when no
more states are added to W; and it then returns that the terminal states cannot be
reached. If however, W; contains one of the terminal states the algorithm terminates
and returns that the terminal states can be reached.

The backward reachability algorithm in Algorithm 2 is very similar. Since it oper-
ates backwards, the set W, is initialized with the set of terminal states S;. This
algorithm terminates when no more states are added to W; using Pre(W;), as de-
fined in Equation 2.6. A terminal state is reachable when there is a backwards path
reaching one of the initial states in S.

A potential issue of reachability analysis is that termination can only be guaran-

Algorithm 2: Backwards reachability

1 Input: S, S, S
. Initialization: Wy = S i=0;

5 repeat

4 if W;nS, # & then

s L return Sy reachable
6 Wi = Pre(W;) u Wy;
7 i=i+1;

s until W; = W;_y;
o return Sy not reachable

teed in practice for finite transition system. However, in real-time systems, the
number of states is infinite, because continuous time plays a crucial role. Encoding
timestamps that are elements of R for the events in the systems into states leads
to an infinite number of states. Therefore, reachability analysis is in general not
guaranteed to terminate.

2.1.3 BISIMULATION

The problem of an infinite state space can in some cases be solved by grouping
similar states together. A finite state space is obtained if an originally infinite state
space can be grouped into a finite number of partitions. A bisimulation is a specific
similarity relation between two transition systems [Mil80o, Par81]. Two bisimilar
systems can have the same model checking properties such as reachability. The
goal is to construct a partitioning of a infinite state space into a bisimilar system
that has a finite state space.

Formally, a bisimulation is a binary relation R ¢ §; x S, between two transition
systems T) = (S, Acty, >, So,) and T, = (Sz, Acty, —, So,) where:

(1.) foreach s; € Sy, there exists s, € Sp, such that (s;,s,) € R, and
for each s, € Sy, there exists s € Sy, such that (s1,s;) € R

(2.) for each pair (s1,5,) € R
(2a.) if 5] € Post(s;) then there exists s} € Post(s;) with (s],s5) € R
(2b.) if s5 € Post(s,) then there exists s; € Post(s;) with (s1,s5) € R

According to (1.) every initial state in So, must be related to an initial state in Sy, and
the other way around. Moreover, the transitions in both systems must be related (2.).
For a transition from s; € S to s] € S; there must also exist a matching transition
from s, € S, to s5 € S, such that both s] and s} are related (2a.). Vice versa (2b.),
a transition from s, € S; must be matched by a transition from s; € S;. Figure 2.1
shows this relationship graphically. Multiple states in one transition system can be
related to the same state in another transition system.

19

& SECTION 2.1.3 - BISIMULATION

ANNOYDAOVY — T d4LdVH)) E

§] - =---- z?:————i+52
R

[2a) Figure 2.1: Bisimulation relation for T; and T>.

A quotient transition system is a partitioning of a transition system T. Partitioning
P of S contains sets of states from S. Every state in S is included in exactly one
partition in P. The quotient transition system is defined as Q = (P, Act, >, Py)
where:

(1.) forallP,P' ¢ P,P - P'iffse Pand s’ € P’ such thats — s’
(2) Py={PcP|PnS + 2}

A more strict condition is required for the partitions of Q to be a bisimulation of
T, and thereby retain model checking properties like reachability.

VP, P’ € P, either Pn Pre(P') =@ or Pn Pre(P') =P (2.7)

Equation 2.7 states that either none of the state in a partition P € P can transition
to a state in a partition P’ € P, or all states in P can transition to P’. This particular
partitioning groups bisimilar states together. A bisimilar quotient transition system
can turn an originally infinite transition system into a finite transition system using
the partitions where each partition can be seen as a state in the new transition
system.

Figure 2.2a shows an example of a (finite) transition system of which we will derive
a smaller bisimilar quotient transition system. The four states of T s, 52, s3 and
s4, can be partitioned into P; = {s1,s,} and P, = {s3,54} where P = {P,P,}. It
can be verified that this P satisfies Equation 2.7. According to this partitioning the
transition system in Figure 2.2a is bisimilar to the transition system in Figure 2.2a,
although it has only half as many states.

An algorithm that can create such a finite transition system is presented in Algo-
rithm 3 [BKLo8]. First, it creates initial partitions for the initial states Sy, terminal
states Sy, and all remaining states. These partitions are refined until the algorithm
terminates exactly when Equation 2.7 is satisfied. During each iteration a pair of
sets of states is picked that do not satisfy the bisimulation condition Equation 2.7.
These sets are replaced by a set that can transition to S;, and another set that cannot
transition to S;. This process is repeated until all partitions satisfy the bisimulation
condition. This algorithm is guaranteed to terminate for finite transition systems.

{s1,52}

a

(%)
{5354}

(c) Bisimulation
(a) Transition system. (b) Partitions of Figure 2.2a. of Figure 2.2a.

[a] Figure 2.2: Example of a bisimulation.

Algorithm 3: Automatic derivation of a bisimulation of a finite transition
system

v Input: §, S, S
. Initialization: P = {So, S SN (Sou Sf)};
; while there exists
Si,Sj € P such that S; n Pre(S;) # @ and S; n Pre(S;) # S; do
4 Sf:SiﬂPre(Sj);
5 8" =8\ Pre(S;);
o | P=Pas) sk

; return P

For infinite transition systems that include time, termination of the bisimulation
algorithm is not guaranteed. Therefore, in the next section we look at timed au-
tomata, which are a subset of infinite transition systems for which a finite transition
system does exist that is bisimilar to the original transition system.

2.1.4 TIMED AUTOMATA

For real-time systems, not only functional correctness of a system is of interest, but
also the temporal behavior of such a system must be within a given specification.
In this section we therefore discuss timed automata [Lewgo, ADgo, Dil89, AD9g4].
Timed automata can be seen as a compromise between expressiveness and ana-
lyzability, where the analysis of a timed automaton is always decidable due to re-
strictions regarding what can be described in the timed automaton. Inherently,
including continuous time in a transition system leads to infinite transition sys-
tems. However, for timed automata, a finite transition system which is bisimilar to

21

& SECTION 2.1.4 — TIMED AUTOMATA

ANNOYDAOVY — T d4LdVH)) E

the originally infinite transition systems can always be constructed.

The beneficial property of timed automata is that a finite transition system can
always be constructed, which is a result of the way time can be expressed in a timed
automaton. A timed automaton consists of a number of clocks, as real valued
variables. All these clocks x € C progress time at the same rate x = 1. The only other
way the value of a clock can change is when a clock is reset to 0. Each clock can
be reset independently. Clocks are therefore useful to measure the time difference
between events. Furthermore, constraints on clocks g must follow a specific syntax:

gu=x<clx<clx>clx>clgng (2.8)

where ¢ € Nand x € C, B(C) is the set of allowed clock constraints over C according
to this syntax. Itis crucial for timed automata that all comparisons of clocks are with
constant integers. Constraints using rational constants could easily be supported
by scaling and shifting these constraints to integers. Without the restrictions on
the clock constraints that can be specified, timed automata would in general not be
decidable.

A timed automaton A is defined as A = (L, Act, C, —, Inv, I°) where

» L is a finite set of locations

» Act is a finite set of actions

» C is a finite set of clocks

» = C Lx Act x B(C) x 2€ x L is a transition relation
» Inv: L — B(C) is an invariant assignment function

» 1% c L is a set of initial states

In this definition, 2€ is the power set of C, where the number of elements in this
power set is 2/°l, where |C| is the number of clocks in C. The transition relation

consists of | <22 I', where g is a binary clock guard, o an action in Actand D € C
a set of clocks that is reset to 0. A transition is therefore only possible when the
clock constraint of the corresponding guard g is satisfied. A transition to another
location is atomic and therefore does not advance clocks. A reset to 0 of a clock x
only occurs when the clock x € D. The invariant of a location Inv(I) specifies a
upper bound on the value of a clock in that location. This specific location must be
left by a transition to another location within the specified bound.

From this definition of a timed automaton, a transition system that also supports
time can be constructed. In such a timed transition system, the state is not only
dependent on the location, but is a tuple (/, n) consisting of both a location [€ L
and value of all clocks #n. The transition relation — therefore allows two types of
transitions. A transition in a timed transition system is either a discrete or delay
transition according to:

(1.) discrete transition: (1, n) £b, (1", n) (including clock resets)

(2.) delay transition: (1, n) X (I,n +d) with delay d € R (n + d should satisfy
Inv(l))

where the discrete transition (1.) is similar to the one for timed automata. The delay
transition (2.) should satisfy the invariant Inv(I) of the current location I, since
n + d may not exceed the clock bound of an invariant.

The usage of the continuous time domain for the clocks immediately leads to an
infinite state space. Moreover, the time delay d, can be infinitly small so there can
be an infinite number of delay transitions within a bounded time interval. The
transition system of timed automata appears to be infinite. Reachability algorithms
for such a system are not guaranteed to terminate. However, based on the clock
constraints in Equation 2.8, a limited number of clock regions can be constructed
for a timed automaton. A clock region is a partitioning of the continuous time space
for all clocks where the clock difference inside one region cannot be distinguished
using clock constraints, as given in Equation 2.8.

As an example, consider a timed automaton consisting of two clocks x; and x;, a
two locations Iy and 1, and the invariants Inv(ly) = {x eR?|x; < 3} and Inv(l) =
{x eR?|x, < 2}, as shown in Figure 2.3a. For each of the clocks the following clock
regions can be identified:

x1:x1=0,x1 € (0,1), 21 =Lx1 € (L,2),x1 =2,x1 € (2,3), %1 =3, %1 € (3,0)
(2.9)

x2:%2=0,%2€(0,1), % =1,% € (1,2), %, =2, %, € (2,00) (2.10)

A region graph is the entire set of all clock regions. The region graph for this sys-
tem consists of the products of these sets of clock regions. The unbounded re-
gions x; € (3,00) and (2, c0) might be reachable in case there is an invariant of
a location that does not specify an upper bound for a particular clock. For this
two-dimensional example, the region graph consists of a number of points, lines,
triangle, and rectangles. These regions are for example:

{x eR*|x=1Ax; = 1} point (2.11)
{x eR*|x € (0,1) Axz} line (2.12)
{x e R? |x1€(0,1) Axp € (0,1) A xp > xz} triangle (2.13)
{x eR*|x;€(3,00) A x5 € (0,1)} rectangle (2.14)

The region graph for the timed automaton shown in Figure 2.3a is graphically rep-
resented in Figure 2.3b.

Intuitively, there is a finite number of regions in such a region graph, and also a
finite number of possible transitions between regions, which leads to a transition
system that is finite. In fact, a region graph is proven to be a finite bisimulation of
a timed automaton [Cergz2]. Therefore, reachability analysis is decidable for timed
automata.

23

& SECTION 2.1.4 — TIMED AUTOMATA

ANNOYDAOVY — T d4LdVH)) E

x1<3 X2 <2

(a) Timed automaton with
two locations and invariants:
Inv(lo) = {x e R*|x <3} and
Inv(h) = {x eR*|x; < 2} (b) Region graph of the timed automaton in Figure 2.3a

X1

0

-l Figure 2.3: A timed automaton and corresponding region graph.

Although the reachability analysis for timed automata is decidable, the state space of
timed automata can be huge. Bounds on the number of clock regions can be derived
of a timed automaton. These are based on integer bounds that originate from an
invariant, for example. The lower and upper bound on the number of regions for
a timed automaton consisting of N clocks (|C|) and the largest constraint on each
clock x; of C;, are as follows:

N
N! H C; (lower bound) (2.15)
i=1
N
N2V T (2C; +2) (upper bound) (2.16)

i=1

From this follows that the number of regions is finite, however, the upper bound
on the number of regions is exponential in number of clocks. A more compact
representation of clock regions is obtained by using so called zones. Zones are
unions of regions and can efficiently be stored in difference bound matrices [Dil89].
Although more efficient representations of timed automata exist, the problem of
model checking of timed automata is proven to be PSPACE-complete [ACD93].

Multiple timed automata are composed together to form one larger concurrent
system. The parallel composition TA; || TA, of timed automaton TA; and TA,
uses handshaking actions H, where H € Act; n Act,. We use these handshaking
actions to communicate between both timed automata. Such a handshaking action
is performed simultaneously across both timed automata, only if both correspond-
ing transitions are possible, e.g. both satisfy their guards. Using these handshaking
actions, concurrent multiprocessor real-time systems can be modeled using timed
automata. However, the state space of the required timed automaton can be very
large.

2.2 DATAFLOW MODELS

Dataflow models have been introduced as models where the concurrency in appli-
cations is made explicit. These dataflow models allow applications to be modeled
and analyzed that are executed on multi-processor systems. In a dataflow model,
individual computations are each represented by a so called actor. Multiple of these
actors are combined to form a dataflow graph. Actors in such a graph communi-
cate by sending data, in the form of a token, across edges connecting the actors. An
actor can only start when sufficient tokens are accumulated on these edges. The
actor then fires and consumes data. Since these actors fire solely dependent on
incoming data, infinite streams of incoming data are therefore supported. This
makes dataflow models suitable to model stream processing applications. Since
applications modeled as dataflow models execute based on presence of data, these
dataflow models are also called data-driven.

A Homogeneous Synchronous Dataflow (HSDF) graph is defined as G = (V, E, §,p)
where

» V is a finite set of actors
» E CV x V is a finite set of edges
» §: E — Ny assigns a number of initial tokens to each edge

» p:V =Ry assigns a firing duration to each actor

In an HSDF graph, a set of actors, V, is connected by a set of directed edges, E. An
edge (v4,vp) € E, where v,, vy € V, in short e, represents an unbounded queue.
For such an edge e, v, produces tokens and v, consumes tokens. Initially, these
edges contain a number of initial tokens as specified by §. An actor is enabled to fire
if there are sufficient tokens on all its incoming edges. The set of incoming edges
and outgoing edges, I, O, € E, of v, is defined as:

I, = {(Vi,Vj) €E|v;= Va} (incoming edges) (2.17)
Ou = {(vi,v}) € E|vi=v,)} (outgoing edges) (2.18)

The number of tokens required on the incoming edges of an actor to be enabled to
fire is determined by the firing rule of the actor. For all Homogeneous Synchronous
Dataflow (HSDF) actors, the firing rule states that each incoming edge in I,, should
contain at least a single token before an actor is enabled. In a self-timed execution of
a dataflow graph, all actors fire as soon as they are enabled. After an actor finishes
its firing it atomically produces tokens on all outgoing edges in O,, a single token
per edge for HSDF actors. Multiple overlapping firings of an actor are also allowed,
as long as there are sufficient tokens on its incoming edges to enable the different
firings.

Time is introduced in dataflow models by assigning a firing duration p to each
actor [SBog]. The firing duration is defined as the time between the start and finish

25

& SecTION 2.2 - DATAFLOW MODELS

ANNOYDAOVY — T d4LdVH)) E

on 17T ¢ —0
I, ={e,ea} Pa 0, ={es3} £
_ S o¢p—o
& —eo— A
Vg ——>¢€3 t t t t t !
e —o—O 0 1 2 3 4 5 6

time

(a) Example of an actor in an HSDF graph. (b) Overlapping firings when a second token
arrives on e; at time 1.

[2a) Figure 2.4: A dataflow actor of which the first two firings as shown.

of a firing of an actor. The firing duration of an actor is often bound within an
interval such that {p, € Ry |pa < pa < pa}-

An example of an HSDF actor is shown in Figure 2.4a. Overlapping firings of this
actor will for example occur when a second token arrives on e; at time 1, as shown
in Figure 2.4b, where p, = 4.

A transition system, such as timed automata, can also be derived for dataflow mod-
els under the assumption that all firing durations are natural numbers, since only
natural numbers can be expressed in clock constraints in transition systems. This
gives an idea of the difference in expressiveness of dataflow models compared to
timed automata, which is detailed further in Section 2.3. Concurrency is made ex-
plicit in such a transition system using a multiset of firings for each actor [GGS* 06].
This multiset contains the remaining firing durations for all firings that have started,
but not yet finished. Each time, time progresses by a clock cycle, all these remaining
firing durations are decremented. In the transition system for HSDF graphs, the
state is a tuple (y, 7), where p associates with each edge € E the number of tokens
present on that edge in that state, whereas 7 keeps track of the time progress of
actors. The time progress 7: V — N associates with each actor v, € V a multiset
that represents the remaining firing duration for different concurrent firings of v,,.
The initial state of the system consists of the initial tokens in the dataflow model,
in combination with an empty multiset for each actor since no firing has started,
such that the initial state equals (8, {v,, {} |va € V}).

The transition system supports overlapping firings of an actor, which is the case
when a firing starts in between the start and finish of another firing of the same
actor, as already shown in Figure 2.4b. Overlapping firings are supported since 7 can
keep track of multiple simultaneous firings of an actor. In case there are sufficient
tokens on all incoming edges, for example > 2, and actor that fire data-driven, two
concurrent firings will automatically start at the same point in time.

Three types of transitions are possible in this transition system of HSDF graphs:
the start of a firing of an actor, its finish, and progression of time. The transition

relation is therefore defined as (y, 7) LA (y’,1"), where there are three options for

B reflecting the three types of allowed transitions f € (V x {start,end}) u {clk}.
The three transitions are defined for an actor v, as:

(1.) (vg, start) if V,ep,: y(e) >1then

(12) Veer,: p(e) =y(e) -1
(1b) 7' =1[ve > 1(va) W {p(va)}]
(2.) (v4, end)if 0 € 7(v,) then

(22) Veeo,: y(e)' =y(e) +1
(2b.) 7' =1[vy = 1(va) N {0}]

(3.) clk otherwise: (when no start or end possible) then

(3a) y'=y
(3b) T ={(va,T(va)©1) |V, € V}

where w is the multiset union and 7(v,)©1reduces all elements in 7(v,) by one. The
start transition of v, is allowed if v, is enabled (1.). The transition decrements the
number of tokens in I, (1a.), and add the firing duration of v,, to the multiset 7(v,),
(1b.). An end transition for v, occurs when there is a firing with a remaining firing
duration of zero (2.). The transition produces a token on all outgoing edges (2a.)
and removes the firing from the multiset (2b.). In case no start or end transition
is possible for any actor, a clk transition will occur (3.). For a clk transition the
number of tokens on the edges remains unchanged (3a.), but the remaining firing
duration of all firings of all actors is decremented by one clock cycle (3b.). The order
of start and end events is not important, however, no clk transition is allowed
when other start or end events are possible.

2.2.1 PROPERTIES OF DATAFLOW MODELS

In this section we discuss important properties of dataflow models that we use
throughout this thesis. These properties include: functional determinism, deadlock,
consistency, auto-concurrency, and monotonicity.

For a dataflow model to be functionally deterministic, two conditions need to be
fulfilled: firings of actors need to be functional and actors need to have sequential
firing rules [LPgs]. A firing is functional if it is free of side-effects and the output of
a firing is purely based on the currently consumed input. Moreover, an actor can
represent a computation that updates its state, since that corresponds to an actor
with a feedback loop with a single token, which prevents multiple simultaneous
firings of the same actor. The firing rules are sequential when a unique firing rule
is selected by using blocking reads on the incoming edges in a predefined, but
potentially input data value dependent, order.

All actors in a dataflow graph should be able to execute infinitely often in the long
run. A dataflow graph is said to deadlock if there is an actor that at some point
cannot make any more progress. Such a deadlock can for example occur when
there are insufficient initial tokens on an edge such that the consuming actor of

27

E SECTION 2.2.1 — PROPERTIES OF DATAFLOW MODELS

ANNOYDAOVY — T d4LdVH)) E

that edge is never enabled. For HSDF graphs, a graph deadlocks when there is a
cycle in the graph without initial tokens.

The number of tokens on each edge in a dataflow graph should be bounded. This
bounded number of tokens ensures that a dataflow graph can be executed within
bounded memory. Consistency of a dataflow graph can be verified by constructing
a topology matrix T : |E| x |V| of a graph. For each edge in the graph, this matrix
contains the number of tokens produced on it by an actor after one firing, and with
negative numbers the tokens consumed from it. In case there is a self-edge, the same
actor both consumes and produces the same number of tokens from / on an edge, a
value of 0 is used in the matrix. A dataflow graph is consistent if rank(T') = |V| - 1.
Moreover, a repetition vector q can be derived from a consistent graph where I'q = 0.
This repetition vector specifies the relative number of firings between all actors such
that the graph returns to the same state, i.e. the same number of tokens on all edges,
after all actors v; have fired q; many times.

In case an actor has a sufficient number of tokens on its incoming edges for multiple
firings, these firing may overlap in time. These simultaneous firings of the same
actor is called auto-concurrency. When for example a second token is produced on
e; in Figure 2.4a before the other tokens are consumed, two simultaneous firings
are possible. The combination of both auto-concurrency and the possibility for a
different firing duration of an actor for each firing can result in reordering of tokens.
This reordering occurs when a firing that is started later, finishes earlier when it has
a lower firing duration than the firing that started before it. Reordering of tokens
breaks the functional determinism of dataflow models in case the tokens model
events of which the order is important. Auto-concurrency can be prevented in a
dataflow model by adding a self-edge containing a single initial token to each actor,
to enforce sequential firings of an actor.

Functionally deterministic dataflow models have a monotonic temporal behavior
[WBSo9]. What this means is that the start times of actors during self-timed execu-
tion of a dataflow graph can only become earlier when actors produce tokens earlier.
Therefore, tokens are never produced later when the firing duration of actors are
decreased, or when the concurrency is increased by adding more initial tokens on
a cycle in the graph. The maximum number of concurrent firing of all actors on a
cycle in the graph is bounded by the number of initial tokens on that cycle. Auto-
concurrent firings of the same actor can cause reordering. Monotonicity also holds
for dataflow models that use tokens that are extended with indices [Hauis, K*16],
like the Cyclo-Static Dataflow with auto-concurrency (CSDF?) model. The next
section discusses different dataflow models in more detail.

2.2.2 MORE EXPRESSIVE DATAFLOW MODELS

Next to the HSDF model, there are many more well-known dataflow models that
are related to the work presented in this thesis. The Synchronous Dataflow (SDF),
Cyclo-Static Dataflow (CSDF), CSDF* and Structured Variable-Rate Phased Data-
flow (SVPDF) model are more expressive than HSDF. Mainly, these models have

(a) SDFE. (b) CSDEF. (c) SVPDF. (d) CSDF“.

-] Figure 2.5: Examples of different dataflow models, each showing a single actor.

more expressive firing rules of the actors compared to firing rule of HSDF actors.
Figure 2.5 shows the graphical representation of these dataflow models. In this
section, these more expressive dataflow models will be discussed briefly.

The first dataflow model that targeted parallel computation was the Synchronous
Dataflow (SDF) model [LM™*87]. In this model, the production and consumption
rate for each edge are known a priori. The production and consumption rate spec-
ifies the number of tokens that are atomically produced on c.q. consumed from
an edge for each firing of the producing c.q. consuming actor. The differences in
production and consumption rates are for example used in Digital Signal Processor
(DSP) applications to represent up- and downsampling. Initially, the SDF model
did not include a notion of time. However, static schedules can be created for SDF
models. In such a static schedule, the order of firings of different actors is defined
at compile time. These schedules can be repeated infinitely, where the size of the
schedule depends on the production and consumption rates of the actors. In this
thesis we will mainly focus on applications where all rates are one, and an actor
consumes a single token and produces a single token for each edge it is connected
to. This single rate version of the SDF model is referred to as HSDF.

The SDF model [LM™87] extends the HSDF model with positive integers for the
number (N) of tokens consumed and produced on an edge. The firing rule of an
SDF actor therefore specifies the number of tokens the actor requires on each of
its incoming edges before it can fire. Also an integer number is specified for the
number of tokens produced after the firing for each of its outgoing edges. For cy-
cle graphs these consumption and production rates can lead to inconsistencies as
discussed in Subsection 2.2.1. As a result, the number of tokens on a cycle is not
bounded. For a consistent SDF graph, a repetition vector can be derived that speci-
fies the relative number of firing between all actors. After all actors in a consistent
graph fire the number of times as defined by the repetition vector, the number of
tokens on each edge is unchanged. This repetition vector is also used to transform
an SDF graph into an equivalent HSDF graph [SBog]. The entries in the repeti-
tion vector directly determine how many HSDF actors are required to represent an
SDF actor. After the transformation, analysis techniques for HSDF graphs can be
applied.

E SECTION 2.2.2 — MORE EXPRESSIVE DATAFLOW MODELS

ANNOYDAOVY — T d4LdVH)) E

In CSDF [B*96], each SDF actor can consist of multiple phases, each with its own
firing rule and firing duration. Multiple firing rules are therefore allowed for a
CSDF actor, however, the actor must cycle through this list of phases and firing
rules in a predefined order, i.e. cyclo-static. After an actor finished the last phase in
the list, the actor returns to the first phase. In contrast to SDF actors, the number of
tokens produced or consumed can be zero in some phases of an CSDF actor. Also
CSDF graphs can be transformed into HSDF graphs [B* 96].

SVPDF is a dynamic dataflow model [GHB13]. In such a dynamic dataflow model,
actors execute data-dependent. In these dynamic dataflow models, not all actors
can be scheduled at compile time, and therefore require run-time scheduling. Other
dynamic dataflow models like Boolean Dataflow (BDF), add dynamic switch and
select actors to SDF. Including these dynamic actors makes the BDF model Turing
complete [BLg3]. It is therefore undecidable in general whether a BDF graph dead-
locks or whether it can be executed within bounded memory. However, an SVPDF
graph, consists of hierarchical blocks, where the sub-graph inside a block can be
analyzed as an SDF graph. These blocks correspond to while-loops that execute data-
dependently for potentially an infinite amount of times. Moreover, these blocks
can be nested. The top level of a SVPDF graph consists of nested blocks, where the
bottom level contains an SDF sub-graph. An SVPDF graph can automatically be
constructed from a program that is described by nested loops [GHB13, GHB14].
Since the original nested loop program can always be executed sequentially, also the
parallel implementation can always be executed in the same order as the sequential
execution order in the nested loop program.

The CSDF* model [K*16] is closely related to the CSDF model. However, in CSDF*
the consumption order of tokens is not based on the production times of tokens and
the FIFO order of tokens on edges. Tokens are annotated with an index, and tokens
can be consumed out-of-order, independently of time, based on the order of the
index of tokens. This out-of-order consumption, and as a result also production of
tokens, allows auto-concurrent firings of actors, while still maintaining functional
and temporal deterministic behavior of CSDF* graphs.

2.2.3 ANALYSIS

Two types of analysis techniques have been developed to analyze dataflow models:
symbolic analysis and simulation-based approaches. The symbolic analysis meth-
ods can only be applied to HSDF graphs, and therefore, requires a transformation to
an HSDF graph when a more expressive dataflow models is used. This transforma-
tion is expensive as the resulting HSDF graph has a exponential number of actors in
the worst-case compared to an originally more expressive dataflow graph [PBLgs5].
Simulation-based approaches explore the state space of a dataflow graph without
the need for a transformation to HSDF graphs, and its analysis resembles the an-
alysis of a timed transition system as discussed in Subsection 2.1.4.

Symbolic analysis of dataflow models relies on the fact that the slowest cycle in a
strongly connected dataflow graph with constant firing durations determines the

throughput of the graph. This slowest cycle is the cycle for which the cycle ratio is
equal to the Maximum Cycle Ratio (MCR) [Rei68]. For each simple cycle (where
no actors or edges are repeated) the sum of firing durations of all actors on the cycle
is divided by the sum of tokens on the edges that form the cycle. The MCR u(G)
of an HSDF graph G is defined as:

ZV'GV(C) Pi
G) = max _—
‘u() ceC(G) ze,-eE(c) 8(6,‘)

(2.19)
where C(G) is the set of simple cycles in G, V(c) the set of actors on a cycle c,
and E(c) the set of edges which form this cycle. The throughput of an HSDF
graph is the inverse of this MCR. Polynomial time algorithms have been developed
to calculate the MCR [DIGgg]. Although Howard’s algorithm [CTCG* 98], has a
higher complexity, it often performs better in practice [DIGg9].

Given a throughput constraint for a dataflow graph, also the minimum required
number of initial tokens can be determined analytically. These initial tokens can
for example be used to model the capacity of a blocking FIFO buffer. The number
of initial tokens on each cycle follows from the sum of the firing durations and the
throughput constraint.

Simulation-based analysis approaches do not require a transformation to an HSDF
graph. In [GGS*06], this transformation is avoided by analyzing a transition system
as described in Section 2.2, extended with production and consumption rates. How-
ever, for some types of SDF graphs there is a long initial phase for simulation-based
approaches, such that transforming the graph to HSDF and using MCR analysis is
nevertheless faster [dGT12].

2.3 ANALYSIS MODELS FOR CONCURRENT SYSTEMS

In this chapter, we have introduced two formal models for the analysis of concur-
rent systems: timed automata and dataflow models. These two models are used
throughout this thesis. In this section, we intuitively present the relation between
these two models and some other strongly related models.

Firstly, analysis models can be characterized as either timed or untimed. Secondly
these models differ in what can be expressed in them, up-to the point where these
models even become Turing complete. Figure 2.6 visualizes this relation for a
number of models and shows intuitively their relation using the subset relation. In
general, the analysis of a less expressive model is easier.

Untimed models are a subset of timed analysis models. The untimed version of
SDF has been introduced in [LM*87]. Later dataflow models were extended with
time, by introducing a firing duration of actors [SBog]. Also for timed automata,
untimed versions exist, of which finite transition systems are an example. Since this
thesis focuses on real-time systems, mainly timed analysis models are of interest.

31

& SECTION 2.3 — ANALYSIS MODELS FOR CONCURRENT SYSTEMS

ANNOYDAOVY — T d4LdVH)) E

Untimed Timed

Turing | untimed- c timed-
incomplete | dataflow/SDF dataflow/SDF
n n
finite (T
os timed automata J
‘ transition systems
n n
Turing (.. ‘
KPN J C | timed component model J
complete {

[« Figure 2.6: Relation between different formal models for the analysis of concur-
rent systems.

Many dataflow models exist, and we have presented some of these models in Sub-
section 2.2.2. In order to simplify the comparison between analysis models, we only
consider the most popular dataflow models in this section, which are not Turing
complete and do not allow choice to be expressed. Therefore, we do consider the
SDF, HSDF and CSDF models, but exclude dynamic dataflow models such as BDF.
These dataflow models have strong analytical properties and are relatively easy to
analyze.

The relation between timed-dataflow models and timed automata will be discussed
in more detail in Chapter 5. In that chapter, functional deterministic dataflow
models that support reordering are transformed into timed automata. These timed
automata can be analyzed to derive properties of the dataflow model. The main
advantage of timed automata is that more details of a system can be included in
the model compared to what can be modeled into dataflow models, which leads to
more accurate analysis results.

The most expressive models are Turing complete, and are shown in the last row
in Figure 2.6. For Turing complete models, it is in general undecidable whether an-
alysis of the model will eventually terminate. Therefore, these models are not prac-
tical for the analysis of real-time systems, where it must be determined whether the
temporal constraints will always be met. Kahn Process Networks (KPNs) is such a
model that is Turing complete [Kahy4, LP95]. The timed component model [H*16]
can be seen as a timed version of KPNs. Both functional and temporal determinism
can be maintained in the timed component model by making use of an index of an
event besides a timestamp, which defines when an event has been produced.

The relation between the analysis model in Figure 2.6 does not only hold for the
expressiveness of these models. Whereas the dataflow models in the top row have re-

strictive firing rules, also the largest over-approximation is applied for these models.
The advantage of this over-approximation is that the resulting monotonic model
can be analyzed with an algorithm that typically has a low run-time, and which
makes use of iterative fixed-point computation. Models that are displayed lower
in Figure 2.6, like timed automata, require a smaller over-approximation to ensure
that the analysis problem is decidable. As a result, the analysis results are more
accurate, but this comes at the cost of a larger run-time of the analysis algorithm.

The results for dataflow analysis are often algebraic, and valid for arbitrary parame-
ters such as buffer sizes and firing durations. This is in contrast to the results of a
model checker of timed automata, which are only valid for specific model parame-
ters. A minor change in the model parameters, e.g. an adaptation of a buffer size,
will require the model checker to be run again, which leads to a higher run-time,
and does provide less insight in the trade-offs than an algebraic expression.

In the next chapters techniques are described that extend the scope of both dataflow
and timed automata based analysis approaches for real-time multiprocessor sys-
tems. We will describe techniques that improve the accuracy of dataflow analysis,
as well as techniques that reduce the run-time of timed automata based analysis
approaches.

2.4 SUMMARY

Two formal models for the analysis of concurrent systems were introduced in this
chapter: timed automata and dataflow models.

To understand the analysis of timed automata, we introduced transition systems
in Section 2.1. Then we discussed reachability analysis, which is used to derive
properties of these transition systems. Including time in transition systems might
at first hand appear to make their analysis undecidable, since there can be an infinite
number of cases that need to be considered. However, for timed automata a finite
bisimulation, i.e. an equivalence relation, can be constructed for region graphs,
which makes analysis of timed automata decidable.

The semantics of the simplest dataflow model, i.e. HSDF, was presented in Sec-
tion 2.2. This model can also be represented as a transition system, which is similar
to timed automaton. Several properties of dataflow models relevant to this thesis
were discussed. Slightly more expressive dataflow models were also briefly intro-
duced. One way to analyze these more expressive models is to transform them into
HSDF graphs and use MCR analysis to derive the throughput of these graphs.

The relation between these two models and some other strongly related models was
presented in Section 2.3. We classified these models on whether they are timed, and
what can be expressed in the models.

33

& SecTION 2.4 - SUMMARY

34

ENFORCING MUTUALLY
EXCLUSIVE TASK EXECUTION
IN MODAL APPLICATIONS

ABSTRACT - Modal data-driven real-time applications, where tasks are sched-
uled using budget schedulers, often result in pessimistic analysis results. The
pessimism is, among others, a result of interference that occurs at the moment
when the application is switching between different modes. We introduce a
lock in this chapter, which is used to make tasks that belong to different modes
to execute mutually exclusive to prevent this type of interference. A dataflow
model from a sequential specification of a modal application is automatically
generated, including constraints resulting from locks. This dataflow model can
be analyzed to verify satisfaction of temporal constraints.

The effects of mode changes on the schedulability of a task set executed on single
processor systems have been extensively studied [S*89, TBWg2b, RCo4b, Guaoga,
S*10]. These works require that mode change control software in the kernel of
the operating system takes care that a new mode change is not started during
a mode change. An exception are dataflow analysis techniques [WBS10, GS1o,
GHB13, S*13] which do allow the start of mode changes during a mode change.
Furthermore, these dataflow analysis techniques are intended for multiprocessor
systems, which we address in this thesis. However, dataflow analysis techniques

This chapter is based on [GK:2].

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVH)) E

ignore that the execution of tasks belonging to different operation modes can be en-
forced to execute mutually exclusive. This results in more pessimism in the analysis
results.

Tasks in different modes are often not active at the same time and can therefore
share resources without interfering with each other. Dataflow analysis techniques
can be used to analyze this resource sharing for systems in which budget sched-
ulers [WBSo9, SBWog] are applied. These budget schedulers guarantee a minimum
budget during a replenishment interval and thereby guarantee that always, thus
also during mode transitions, at least a minimum amount of processor time is re-
served for the execution of each task. As a result, a single Worst-Case Response
Time (WCRT) can be derived per task at design time. Throughput analysis of the
task graph is based on these WCRTSs. The reservation of the resources simplifies
this analysis drastically. However, dataflow analysis techniques neglect that tasks
that execute mutually exclusive in different modes will not interfere. By enforcing
tasks to execute mutually exclusively, the pessimism in the analysis results can be
reduced.

In this chapter we present a dataflow analysis approach which takes into account
that tasks execute mutually exclusive in different modes, which can reduce the pes-
simism in the analysis results. To enforce mutual exclusive execution when it is
beneficial, a new lock is introduced. This lock allows parallel execution of a group of
tasks, but enforces serial execution between groups. The lock is inserted by a com-
piler, which transforms a sequential specification of the application into a parallel
task graph and an SVPDF model [GHB13]. The lock is inserted in such a way that
all tasks can still execute in the same order as in the sequential input specification;
therefore deadlock-free execution is guaranteed. The generated SVPDF model is a
dynamic dataflow model in which mutual exclusion can be expressed. This SVPDF
model is used to determine whether addition of a lock results in satisfaction of the
throughput constraint and is used to compute the required buffer capacities.

The outline of this chapter is as follows. First, we position our contribution rela-
tive to related work in Section 3.1. In Section 3.2, we present the basic idea behind
our approach. The different types of mutual exclusivity that we distinguish are de-
scribed in Section 3.3. That mutual exclusivity results in tighter WCRTSs is shown in
Section 3.4. The realization of our lock is described in Section 3.5. Furthermore, it is
shown that the generated parallel task graph that includes locks is always deadlock-
free. The SVPDF model that we use is described in Section 3.6. Modeling mutual
exclusivity in an SVPDF model of the application is explained in Section 3.7. The
applicability and benefits in terms of throughput and processor utilization for a
WLAN application are discussed in Section 3.8. Finally, the conclusions are stated
in Section 3.9.

3.1 RELATED WORK

In this section we compare our lock with locks described in literature and discuss
other approaches to handle and analyze mode switches.

Mutual exclusive access to resources is obtained by making use of locks. Such
locks are usually implemented with atomic read-modify-write operations such as
test-and-set and load-link-store conditional [CSGgg]. These type of locks are un-
suitable for real-time systems because they are based on a retry mechanism which
makes them non-starvation-free [Her88]. Detailed knowledge, execution rates
and execution times, of all tasks using these locks is then required to be able to
provide temporal guarantees. Starvation-free versions of locks do exist but often
incur a much higher overhead. Examples of starvation-free locks are the Bakery
lock [Lamy4] and Szymanski’s mutual exclusion algorithm [Szy88]. The lock pro-
posed in this chapter is starvation-free but does not introduce a high overhead. A
key difference with other locks is that the proposed lock enforces an order in which
groups of task can acquire the lock.

Ordinary load and store operations are used to guarantee mutual exclusive access
in the Bakery lock and Szymanski’s mutual exclusion algorithm. These locks re-
quire that sequential consistency [Lamy9] is supported as the memory consistency
model by the multiprocessor hardware. FIFO buffers can also be realized using
ordinary load and store operations [N*02]. However, they require a much weaker
memory consistency model [vdBBoy] that only guarantees that writes issued by
a processor complete in the order that they are issued, and that read and writes
that access the same memory do not overtake each other. Circular buffer [BB]So8]
implementations have been proposed that can be seen as a generalization of these
FIFO buffers because they allow multiple readers and writers. The lock proposed
in this chapter is based on the same principles as these circular buffers.

The Giotto approach [HHKo1] is suitable for modal real-time applications, but re-
quires that the tasks are executed on a time-triggered multiprocessor system. In
such a system, tasks are executed according to a precomputed schedule. This sched-
ule is strictly periodic except during mode transitions. Moreover, this schedule is
constructed at design time purely based on the WCET of the tasks. The approach
described in this chapter relies on a data-driven execution of the tasks which results
in more scheduling freedom and allows aperiodic task execution. To guarantee sat-
isfaction of the throughput constraint a worst-case schedule can be computed for
aperiodic tasks based on a more accurate two parameter work-load characteriza-
tion [H*13b] of the tasks instead of using WCETs.

Techniques for the prevention of overloads that result in violation of the WCRTSs
during the transition between modes on single processor systems have been deeply
investigated in the real-time literature [S*89, TBWg2b, Guaoga] and a survey of
mode change protocols for FPP scheduled systems can be found in [RCo4b]. Most
of these protocols delay the start of tasks during a mode change. Some of these
works are geared towards servers of which budget schedulers are a subclass [ST10].

37

& SecTION 3.1 - RELATED WORK

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVH)) E

All these approaches assume that a subsequent mode change is not started before
the previous mode change completes. Furthermore, they are only applicable for
acyclic task graphs while the method described in this chapter can handle cyclic
task graphs and overlapping mode changes are supported. Cycles in the task graphs
are a result of data dependencies and of the use of buffers with a bounded capacity.

Classical dataflow models such as HSDF, SDF [LPgs] and CSDF [B*96] as intro-
duced in Section 2.2 can only model static applications, i.e. applications of which
their synchronization behavior is independent of the input data. In [DSB*13], SDF
models are analyzed using static-order schedules, however, conditionally executed
tasks cannot be encoded in these static-order schedules. Therefore, these models
are unsuitable for the modeling of modal applications. However, the recently in-
troduced Variable-Rate Phased Dataflow (VPDF) [WBS10] and Scenario-Aware
Dataflow (SADF) [T*06, ST13] models are suitable to describe modal applications.
Generation of a parallel task graph and a corresponding structured version of the
VPDF model, which is called SVPDEF, is presented in [GHB13]. An advantage of this
approach is that the task graph and the corresponding analysis model are deadlock-
free. In this chapter we present the modeling of mutual exclusive execution in the
SVPDF model. This model is used to show that an admissible worst-case schedule
exists that satisfies the throughput constraint imposed by the periodic source of
the application. A schedule is admissible if all tasks do not execute before sufficient
data and space is available. The production moments of the data in this worst-case
schedule are upper bounds on the production moments of the tasks in all possible
(aperiodic) run-time schedules. The SVPDF model is generated by a compiler from
a sequential description of the application in the Omphale Input Language (OIL)
language.

The dataflow analysis techniques discussed in this chapter are applicable in combi-
nation with budget schedulers [WBSog]. As discusses in Subsection 1.2.1, budget
schedulers are a subclass of servers that guarantee a minimum cycle budget in a
replenishment interval. In [WBSo9] it has been shown that the worst-case effects of
run-time task scheduling by budget schedulers can be included in firing durations
of the actors of dataflow graphs. A budget scheduler with priorities is introduced
in [SBWog] which allows reducing the WCRT of one task at the cost of an increased
WCRT of the other tasks. Most budget schedulers are work-conserving and as a
result allocated budget for a task that is not used by this task becomes available for
other tasks.

The budget schedulers used in this chapter are a subclass of the servers that are
used in [S*10]. The approach in [S*10] adapts the parameters of the server during
a mode transition by a separate mode change controller in the scheduling kernel.
The approach described in this chapter does apply a different approach in which
parameters of the scheduler are implicitly adapted due to the fact that resources are
not used anymore by some of the tasks after a mode transition. Furthermore, the
activation and deactivation of tasks is a responsibility of the tasks themselves and is
part of the description of the application. This description is a sequential program

Quabe
= 1)

(a) Time slices available for 7,, 73, and 7.

Qac
70 B

(b) Time slices available for 7, and 7.

ch

w o w)

(c¢) Time slices available for 73, and 7,

(4] Figure 3.1: Replenishment interval of mutually exclusive tasks

with while-loops and if-conditions instead of tasks with scheduling parameters
and a separate description of the behavior of a mode change controller. Another
important observation is that we are dealing with a multiprocessor system and
therefore the implementation of a (centralized) mode change controller would not
be straightforward.

3.2 BASIC IDEA

In this section we present the basic idea behind our approach. With a didactic
example, we illustrate that the WCRTS of repetitively executed tasks can be reduced
and a higher minimum throughput is obtained if information about mutually ex-
clusive execution is taken into account. We derive these tasks from a sequential
program in which if-conditions and while-loops are used to describe modes and
mode transitions. Tasks execute data-driven such that variations in execution time
can be exploited [H*13b]. We show the counterintuitive effect that tasks resulting
from different while-loops or branches of an if-then-else statement do not necessar-
ily execute mutually exclusive. We explain why mutual exclusivity can be enforced
with locks without introducing deadlock as a result of that the tasks in the task
graph are generated from a sequential program. We furthermore explain the mod-
eling of the sequence constraints that result from a lock in an SVPDF model. This
model is used for throughput analysis.

Figure 3.1 illustrates that the WCRTSs of tasks can be reduced by taking into account
that tasks execute mutually exclusive. One replenishment interval of a budget sched-
uler is shown in Figure 3.1a, in which three time slices are available for respectively
the execution of tasks 7,, 75, and 7.. These tasks execute until they exhaust their
budget after which they continue their execution in the subsequent replenishment
interval. A task voluntarily suspends its execution in case it is not enabled because

39

& SecTION 3.2 — BASIC IDEA

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVH)) E

1Z=0;

» loop {

3 loop{

4 f(out x, out vy, z);
5 g(x);

6 } while(x);

8 loop{

9 h(out w, out z, vy);
10 k(w);

1 } while(w);

12 } Whlle(l);

(a) Code example (b) SVPDF model

<] Figure 3.2: Mutual exclusion of while-loops

there is insufficient input data or output space to start the execution of the task after
which a task switch occurs. In our example we will assume a budget of one, two,
and two time units for tasks 7,, 75, and 7. respectively.

The replenishment interval is reduced in case 7, and 7, execute mutually exclusive.
The length of the replenishment interval becomes three in case only task 7, executes
and four in case that only 7, executes, as shown in Figure 3.1b and Figure 3.1c
respectively. A reduction of the replenishment intervals of the tasks results in a
reduction of the WCRTS, as directly follows from the WCRT equation [WBSo7b]
in Equation 3.1. In this equation R; is the WCRT, Q; the replenishment interval,
B; the WCET, and S; the budget of 7;.

Ri:Bi+(Qi_Si)[E] (3.1)
Si

During a mode transition it might occur that 7, finishes at the end of its slice and
immediately after that a mode switch occurs after which 7, starts its execution.
However, this does not result in a longer WCRT for 7, and 1}, than Q,. and Q,
respectively, as will be explained in Section 3.4.

The tasks are derived by a multiprocessor compiler from a sequential program of
which an example is shown in Figure 3.2a. Each while-loop in this program corre-
sponds to a mode of the application. After parallelization, a task graph is obtained.
This task graph can be modeled with the SVPDF model in Figure 3.2b. Every func-
tion in the sequential program corresponds to one task in the task graph and every
task corresponds to one actor in the SVPDF model. These actors are represented by
nodes in the SVPDF model. Every variable in the sequential program is converted

change

L
o0
<
v
=
=
=]
2
[}
193
o
St
oy
time

(a) Without mutual exclusion
° change
oo
<
2 mode o T mode 1
3
2
L
Q
<) :)
et T d
o

time

(b) With mutual exclusion

[aa] Figure 3.3: Processor usage during a mode switch

in a circular buffer and each circular buffer corresponds to at least one edge in the
SVPDF model.

To understand the example it is sufficient to assume that the SVPDF model in
Figure 3.2 has an HSDF-like behavior, i.e., actors can only fire if at least one token
is present on all its inputs and a token is produced on all outputs when an actor
finishes its firing. We can therefore conclude from this model that actor v ¢ and v,
cannot fire at the same time as a result of the cycle in the model with one token.
This cycle is a result of the fact that function % in the second while-loop cannot start
before the value y of the first while-loop becomes available. Also, function f cannot
execute for successive executions before the value z from the second while-loop
becomes available. However, we can also conclude from the model that actor v ¢
and vy can fire at the same point in time because they are not part of a cycle with
a single token. They can fire at the same time if there is an input token present for
vg and vy, which can occur after v¢ has produced a token on each of its outputs
and as a result v, fires and produces a token for v before v, finishes its execution.
A similar situation can occur during the execution of the task graph after 7 has
produced a data item for 7, and then a mode switch occurs.

Figure 3.3a illustrates intuitively that executions of tasks belonging to different
modes can execute simultaneously during a mode transition. Locks can be used to
prevent that tasks belonging to different modes execute simultaneously. This situa-
tion is shown in Figure 3.3b. This figure also shows the counterintuitive effect that
the mode transition will in some case occur earlier despite that less tasks execute
in parallel during a transition. The reason is that the WCRTSs of the tasks can be re-
duced by making use of the knowledge that they execute mutually exclusively. This

41

& SecTION 3.2 - BASIC IDEA

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVH)) E

2T T

ot

(a) Without lock (b) With lock

[2a] Figure 3.4: HSDF model before and after adding a lock

results in an improvement of the minimum throughput as computed with dataflow
analysis.

Mutual exclusive execution is usually only enforced between tasks that execute on
the same processor. Therefore even if locks are applied, a mode transition usually
starts on different processors at different moments in time. As a result, tasks belong-
ing to different modes will execute on different processors at the same moment in
time. The lock presented in this chapter can also be used to enforce mutually exclu-
sive execution of tasks on different processors which might be beneficial because it
can reduce contention at shared memory ports and thereby reduce the execution
times of the tasks. However, this option will not be detailed in this chapter.

The enforcement of mutual exclusivity with locks results in additional constraints
on the order in which the tasks can execute. These constraints are modeled with
the red dashed edges in the SVPDF model in Figure 3.2b. These edges form a cycle
with one token and as a result the firings of all actors in a block do not overlap
with firings of actors in another block. However the actors in a block can still fire
concurrently.

The locks are added in the tasks in such a way that deadlock does not occur. This is
possible because the tasks and the task graph are derived from a sequential program
which is deadlock-free by definition. Therefore we can insert the acquires and
releases of the locks according to the order defined by the sequential program that
is still a valid order. Other execution orders of the tasks do not result in a different
functional behavior of the tasks because we can rely on the fact that the task graph
that we create can be represented as a functionally deterministic dataflow model.

Adding locks can reduce the WCRTS of the tasks but does not necessarily improve
the throughput of the application. The reason is that the lock enforces besides
mutual exclusivity, also the execution order as defined in the sequential program.
This execution order might not be the order that results in the maximum through-
put even in the case that the WCRTSs are reduced. For ease of understanding we

illustrate this with an HSDF example instead of an SVPDF model. In Figure 3.4a
an HSDF model is shown in which actor v and v; execute on one processor and
v, on another processor. The WCETs of the actors is T and Ry and R, is then 2T
under the assumption that each actor has a budget T. In this case the throughput
is determined by the cycle with the highest cycle mean which is 2T Figure 3.4b
corresponds to the case that 7y and 7, execute mutually exclusive as a result of a
lock and that in the sequential program first the function that corresponds to 7
is executed before the function corresponding with ;. As a result of the lock R,
and R, are reduced to T. However, because the lock enforces an execution order,
additional edges should be added in the HSDF model which are dashed and colored
red in Figure 3.4b. These additional edges increase the maximum cycle mean to 3T
and reduce the throughput to 5. This shows that the decision whether adding a
lock is beneficial requires global analysis of the dataflow model.

3.3 TYPES OF MUTUAL EXCLUSIVITY

In this chapter we distinguish between two types of mutual exclusivity: intra-
iteration and inter-iteration mutual exclusivity.

Tasks are intra-iteration mutually exclusive if there is no overlap in their execution
within one iteration of a while-loop. An example of such mutual exclusivity is an
if-else-statement in which during one iteration of the loop either functions in the
if-branch or the else-branch execute, but not both. Another example is if there
is a data-dependency between two statements, preventing them from executing
simultaneously.

Tasks can also be inter-iteration mutually exclusive. This means that tasks derived
from functions located in the same while-loop do not execute simultaneously when
considering different loop iterations. An example of this type would be two func-
tions where the first function writes to a variable read by the second function and
vice-versa. In an SVPDF model such a case can be found if there is a block, model-
ing a while-loop, having two actors on a cycle with one token on that cycle. Tasks
that are intra-iteration mutually exclusive do not have to be inter-iteration mutually
exclusive. For example the two branches of an if-else-statement are intra-iteration
mutually exclusive but due to a pipelined execution they do not need to be inter-
iteration mutually exclusive. In such a case tasks from both branches can execute
in different iterations of the surrounding while-loop simultaneously.

If tasks in a task graph have intra-iteration and inter-iteration mutual exclusivity,
this can be exploited by the method introduced in this chapter. If tasks are both intra
and inter-iteration mutually exclusively, they always execute mutually exclusive.
The derived SVPDF model can be used to determine which tasks are mutually
exclusive by searching cycles having one token on them. Exploiting this information
does not require a change in the task graph. If such cycles do not exist, the lock
introduced in Section 3.5 can be used to enforce mutual exclusivity and thus to
create mutual exclusivity.

43

& SecTION 3.3 - TYPES OF MUTUAL EXCLUSIVITY

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVH)) E

3.4 RESPONSE TIMES TDMA

In this section we show that reduced replenishment intervals can be substituted in
the WCRT equation given that some of the tasks scheduled by a budget scheduler
are deactivated during a mode change and others are activated. We make use of
the fact that a budget scheduler allocates budgets to the tasks in a fixed cyclic order.
We also make use of the property that a task returns control to the scheduler when
not enabled.

As described in Section 3.2 it can be the case that during a mode transition all
tasks scheduled on a processor use their time slice immediately after each other.
Therefore, the situation as depicted in Figure 3.1a can occur. This suggests that full
replenishment interval, Q 5., should be used in Equation 3.1, which is however not
always the case. Instead of the full replenishment interval, the shorter replenish-
ment Q,. and Q,, intervals can be used for 7, and 7, respectively while for 7. the
longer interval Q. must be used to compute its worst-case response time.

The reason that a shorter replenishment interval can be used for 7, and 7, is that
they are mutual exclusive and because the WCRT is defined as the maximum time
between enabling and finish of task. We will make use of case-distinction to show
that a valid bound on the WCRT is computed in case we use the reduced replenish-
ment intervals in Figure 3.1b and Figure 3.1c in Equation 3.1 for the computation of
R, and R,.

It is given that 7, and 7, execute mutually exclusive. Therefore we know that before
a mode change only one of these tasks is active. As a consequence we can assume
that Q,. and Q. are valid replenishment intervals for 7, and 7, respectively.

When a mode change occurs there can be a transition from the first mode in which
T, is active to the second mode in which 7, is active. After 7, finishes its execution
it will yield the processor. As a result 7, will receive its budget in Q. time. A
similar situation occurs for the transition from the second mode in which 7 is
active to the first mode in which 7, is active. Here 7, will receive its budget in Qg
time after 7, finishes its last execution in the previous mode.

Because in all the possible cases the budgets become available for 7, and 75 in
respectively Q,. and Q;, we conclude that correct WCRTs are obtained when they
are used in Equation 3.1.

For 7. the situation is different than for 7, and 7,. For this task it can only be
guaranteed that Q. is available in every Q,;. because between two slices for 7,
there can be an execution of 7, and 1, while 7. is enabled.

The same reasoning as applied in this section can be used to proof similar results for
the case that an arbitrary number of mutual exclusive tasks are scheduled together
with an arbitrary number of tasks that are not mutual exclusive.

. Toopt acqLock(Ly, 0, 7¢)

2 loop{ e T

, x = fO; relLock(Ly, 0, Tf)

4 } while(...); % b,

5 L) “x

6 loop{

, ¢(x); acqLock(Lg, 1, 1)

8 } while(...); a

o } while(1); relLock(Lo, 1, 74)
(a) OIL program (b) Task graph (c) Lock usage

[2a] Figure 3.5: Mutual exclusion of while-loops

3.5 REAL-TIME LOCK IMPLEMENTATION

This section describes our realization of the lock and the code generation done by
our automatic parallelization tool. Furthermore, it presents the proof that the lock
insertion method described in this section does not introduce deadlock.

3.5.1 REALIZATION

We first describe the realization of a lock that is suitable for the most basic case
which is when two tasks are made mutually exclusive. We then extend this real-
ization for an arbitrary number of tasks. Finally, we explain an additional gen-
eralization to make the lock suitable for mutual exclusive execution of groups of
tasks.

An OIL program with two modes in which each mode consists of one function is
shown in Figure 3.5a. In this program the function f is executed for an unknown
number of times after which function g is executed for an unknown number of
times. This is repeated forever. The loop conditions are left implicit in order to
simplify the example. This program is converted into the parallel task-graph shown
in Figure 3.5b, where task 7 is extracted from function f. Buffer b, is extracted
from variable x.

The realization of the lock is inspired by the implementation of circular buffers
[BBJS08, BBS11]. These buffers can be implemented with ordinary load and store op-
erations instead of atomic read-modify-write operations which is needed to make
them starvation-free. These atomic read-modify-write operations are not needed
because each shared variable that is used in the buffer implementation is updated
by only one task.

Similar to a circular buffer, the lock can be used by a task by calling two functions:
acqLock, and relLock. This is illustrated in Figure 3.5c. The arguments to these

45

& SecTION 3.5 - REAL-TIME LOCK IMPLEMENTATION

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVH)) E

Tg Tf Ty Tf Tf Tg Ty
I P4 !
anD anD anD

(a) Initial pointers (b) Head 7 updated (c) Tail 77 updated
Tg Tg Tf Tg Tf Tf Tg Tf
! I Pt
(o2]2) T]2) (o1]2)

(d) Head 7, updated (e) Tail 74 updated (f) Wrapping head 7/

(4] Figure 3.6: Head and tail pointer updates for a lock consisting of two tasks

functions are a lock identifier, the execution order and a reference to the task. For
every lock it holds that tasks using the same execution order argument can execute
simultaneously while tasks with a different execution order argument execute in
the order indicated by this argument.

The implementation of the lock consists of a head and a tail pointer for each task
using the lock. The head pointer of a task is incremented during an acqLock call
and the tail pointer is incremented during a relLock call. When the pointers reach
the end of the array they wrap around to the beginning of the array. Before a head
pointer can be updated to a next location it must be verified that no tail pointer
of an other task points to that location, i.e. the acqLock call blocks until this is
the case. If the function acqLock blocks, a yield call is executed indicating to the
scheduler that the next task can now use its budget by resuming its execution. This
is summarized in the following pointer rules for the lock:

1. Head pointer can only move to the next location if there is no tail pointer
with a different execution order, and blocks otherwise.

2. First the head pointer of a task is moved, then the corresponding tail pointer.

3. Pointers are initialized in the reverse of the execution oder, with one initially
location at the end without pointers.

4. Pointers wrap around.

For the two tasks 77 and 7, in the example from Figure 3.5 an array with three
elements is allocated. One for each task and an empty location. The pointers are ini-
tialized as shown in Figure 3.6a. The head pointer is visualized as pointing upwards
and the tail pointer as pointing downwards. Initially the head pointer of 7 is the
only pointer that can be updated without violating the rule that the head pointer
may not point to the same array element as the tail pointer of an other task. Thus
the acqLock call of 7 ¢ updates the head pointer of 7, as shown in Figure 3.6b. After

1 loop {

2 loop{
3 x = £0);
4 } while(...); T T Ty
s loop{
6 vy = g(x); I I I
;7 } while(...); o|1|2]3
8 loop{
9 h(y);
10 } while(...);
n } while(1);
(a) OIL program (b) Task graph (c) Lock pointer initialization

[« Figure 3.7: Example containing three modes

the relLock call of 7 also the tail pointer is incremented as shown in Figure 3.6¢.
From this figure we can now conclude that only the head pointer of 7, can be in-
cremented, see Figure 3.6d. After function g is executed its relLock call will update
the tail pointer of 7, as shown in Figure 3.6e. At this point only the head pointer
of 77 can be updated after which this pointer will wrap around to the begin of the
array as shown in Figure 3.6f. These steps can be repeated forever.

The in the previous paragraph described lock can be made suitable for # tasks in
a relatively straightforward way. This lock requires an array with #n + 1 locations.
Figure 3.7a shows such a program containing three modes where all details about
variables are left out for clarity. The corresponding task graph consists of three
tasks and is shown in Figure 3.7b. The initialization of the pointers of the lock is
depicted in Figure 3.7¢c. The conditions under which the pointers are allowed to be
incremented remains as described in the previous paragraph.

This lock can be generalized to support groups of tasks which execute mutually
exclusive with other groups of tasks. An example of an OIL program in which such
mutual exclusion can be exploited is shown in Figure 3.8a. In the OIL program
there are two modes but now with two functions f and g in the first mode and one
function, A, in the second mode. We construct a task graph from it as shown in
Figure 3.8b. Figure 3.8c shows that the tasks derived from the functions f and g can
execute simultaneously. Here, the execution order parameter of these tasks is both
zero, indicating there is no constraint between the tasks. The main modification
of the lock is that the pointers of the tasks that belong to the same group, point
initially to the same location and these pointers can be incremented independently
of the position of the other pointers that belong to the same group.

Since there are two groups in this example, an array of three elements is created,

47

& SECTION 3.5.1 — REALIZATION

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVH)) E

acqLock(Ly, 0, 7¢)

relLock(Lo, 0, 7)

1 loop { acqLock(Lo, 0, 7¢)
2 loop{ -

3 x = £0; relLock(Lo, 0, 7)
4 vy = g(x);

5 } while(...); T

6 loop{

7 h(y); acqLock(Ly, 1, 73)

s} while(...);

9 } while(1); relLock(Ly, 1, 7p,)

(a) OIL program (b) SVPDF model (c) Lock usage

[aa] Figure 3.8: Example usage of the lock having groups of tasks

one element for each group and a free one. The initial locations for the pointers are
set according to the defined rules and are shown in Figure 3.9a. Tasks 77 and 7,
both belong to the same group and can both move their head. Task 7, performs
this movement first as shown in Figure 3.9b. Now there are two options; the head
of 7y or tail of 4. The first option is shown in Figure 3.9c. Now both tasks can only
update their tail in an arbitrary order for example first 7, and then 7}, as shown in
Figure 3.9d and Figure 3.9e. At this point the only possible movement is the head
of 7, as illustrated in Figure 3.9f. This sequence of head and tail updates can be
repeated indefinitely.

3.5.2 CODE GENERATION

We now show how such a lock can be used by an automatic parallelization tool such
that tasks execute mutually exclusive. The code between the calls to the functions
acqLock and relLock executes mutually exclusive as dictated by the rules outlined
in the previous section.

For the simple example with two functions in two modes as shown in Figure 3.5,
the implementation of the extracted tasks is shown in Figure 3.10. The acqLock
function is the first statement in the outer while-loop and the relLock function
is the last function such that the first inner loop is mutually exclusive with the
second inner loop. The execution order argument is derived from the order of the
statements in the sequential OIL program. Because f is before g, task 7 has number
zero and 7, number one. Basically, an intra-iteration dependency is added between

Ty TfTg T, TpTy Ty Ty TfTg Tf, Tg
P iyt S N
(o[]2) (o]:]2) (o]2]2)

(a) Initial pointers (b) Head 7, updated (c) Head 7 updated

Th Tf Tng Ty Tf,Tg Ty Ty Tf,Tg
Pt ! ! I
[o 1 2] [(0] 1 2] [O 1 2]

(d) Tail 74 updated (e) Tail 77 updated (f) Head 7, updated

2] Figure 3.9: Head and tail pointer updates for a lock consisting of two groups of
tasks

1 do{ 1 do{
2 acqlock(Ly, 0, 75); 2 acqlock(Loy, 1, 74);
3 acqProd(b,); 3 acqCons(by);
4 do{ 4 do{
5 write(b,, £0); 5 g(read(b,));
6 } while(...); 6 } while(...);
7 relProd(b,); 7 relCons(b,);
8 rellock(Lg, 0, 7y) 8 rellLock(Ly, 1, 7g);
9 } while(1); o } while(1);
(a) Generated code of 7 (b) Generated code of 7,

[2a) Figure 3.10: Tasks resulting from Figure 3.5

f and g. If the lock wraps back to execution order number zero, an inter-iteration
dependency is added.

A similar generation of code can be done for if-statements. In Figure 3.11a a sim-
ple OIL program with an if-statement is shown and the obtained task graph after
parallelization is shown in Figure 3.11b. Both tasks 74 and 7, read from a buffer b,.
The order from the sequential program is visualized in Figure 3.11c. Because the
if-else-statement has two branches, the two possible orders can occur as shown.

Statements in different branches of an if-else-statement must be in one group if they
use the same lock. This is because deadlock can occur otherwise, because there is no
sequential order defined between statements in two branches. However, statements
in the if-branch are already intra-iteration mutually exclusive with statements in
the else-branch. Statements in one branch can be made mutually exclusive using a
second lock.

49

& SecTION 3.5.2 — CODE GENERATION

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVHD) E

1 loop {

2 x =f(Q);

s iFCLD] @

4 g(x);

s} else { bx

6 h(x);

7}

s } while(1); @ @
(a) OIL program (b) Task graph (c) Sequential program order

[2a] Figure 3.11: Mutual exclusion in a model application described by a conditional-
statement

1 dO{

1 dof 2 acqLock (Lo, 1 dof
2 acqLock (Lo, 3 1,14)3 2 acqLock (Lo, 1, 14);
3 0,14); 4 acqCons (by); 3 acqCons (by);
4 acqProd (b«); 5 if(...) { 4 if(...) {}
s write (b, , 6 g(read(by)); s else{
6 £0)); 7 } 6 h(read (bx));
7 relProd (by); 8 relCons (by); 7 }

relLock (Lo, 9 relLock (L, 8 relCons (by);
9 O,Tf); 10 l,Tg); 9 relLOCk(Lo,l,Th);
1o } while (1) ; 1} while (1) 10 } while (1)

(a) Task 75 (b) Task 7, (c) Task 7,

[2a] Figure 3.12: Generated tasks from Figure 3.11a including a lock

Assume that we indicate that functions g and h should execute mutually exclusive
with function f. Note here that g and h are already intra-iteration mutually exclusive,
but not inter-iteration and thus an overlap in execution can occur as a result of
pipelining. After adding these functions as one group in a lock they also execute
inter-iteration mutually exclusive. After adding the lock, the implementation of
the tasks becomes as shown in Figure 3.12. The acqLock call in these tasks is again
the first statement in the while-loop and the relLock is the last statement. This
ensures again that the entire loop body is mutually exclusive with the loop body of
other tasks. Note here that also the acquire and release functions for the buffers are
placed around the if-statement. This enables the derivation of an SVPDF model
and guarantees a deadlock-free execution when no mutual exclusivity locks are
used.

1 loop {

[]
o £0);
3 g0);
+ hQO;
s kKOs
¢ } while(1); @ 0
(a) OIL program (b) Constraints in the (c) Constraints resulting
sequential program from two locks

[a Figure 3.13: Sequential program consisting of four functions. Ordering is en-
forced in the model by partially preserving the sequential ordering

3.5.3 DEADLOCK-FREEDOM

In this section we explain in more detail why the insertion of the acquire and release
calls for the locks will not introduce deadlock.

Deadlock-freedom of task graphs resulting from OIL program is explained using
the program shown in Figure 3.11a. The ordering constraints resulting from the
sequential program are shown in Figure 3.13b. Assume that we require that the
tasks that result from the functions f, g, and h should execute mutually exclusive
as well as that the tasks that result from the functions g, h and k should execute
mutually exclusive. To achieve this we make use of two locks. The first lock enforces
the execution order f, g, h, and then f again in the next iteration. This is modeled
by the red edges in Figure 3.13c. The second lock enforces the execution order g,
h, k and then g again in the next iteration. This is modeled by the blue edges in
Figure 3.13c. Each time we refer to the next iteration an initial token is placed on
the corresponding edge.

The reasoning why the resulting task graph will remain deadlock-free after locks
are added can be seen as follows. When a number of groups of statements in a loop
is made mutual exclusive, intra-iteration dependencies are added between these
groups. As presented in Section 3.5, these intra-iteration dependencies are added
in such a way that they follow the order of the statements in the sequential specifica-
tion. These added intra-iteration dependencies can thus never make the sequential
schedule inadmissible. In Figure 3.13¢c dependencies are added for example from
function f to function g and from function g to function k. The sequential schedule
of Figure 3.13b shows that function g is scheduled after f and function k after g.
Therefore, after adding the constraints of the lock, the sequential schedule is still

51

& SEcTION 3.5.3 - DEADLOCK-FREEDOM

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVH)) E

admissible.

Moreover, when making groups of statements mutual exclusive, an inter-iteration
dependency is added from the last group back to the first group. In the sequential
schedule we have that the first statement of a loop executes after the last statement
of the previous iteration of that loop. A group of statements can by definition
never contain a statement that occurs earlier or later in the sequential specification
than this first or last statement respectively. Adding an inter-iteration dependency
between the last mutual exclusive group to the first group can thus never invalidate
the sequential schedule. Consider for example the dependency in Figure 3.13¢ that
prescribes that function f in iteration i + 1 can only be executed after function k in
iteration i is finished. This dependency does not invalidate the sequential schedule
because in this schedule, function / in iteration i executes before function k in
iteration i which on its turn executes before function f in iteration i + 1.

3.6 SVPDF MODEL

In this section, we present the SVPDF model, which can be automatically derived
from an OIL program. The SVPDF model is based on the VPDF model but contains
additional structure in the form of hierarchical blocks to enable efficient analysis.
These blocks can be seen as do-while loops that iterate for an unknown number
of times. In Section 3.7, we will model the constraints that result from locks in this
SVPDF model.

In this chapter we only consider the derivation of the SVPDF model for scalar
variables. However, actors in this model can be extended with phases indicating
a sequence of how many tokens need to be consumed or produced every firing of
an actor [GHB14]. This number of tokens is based on the synchronization done
by tasks. The modeling of mutual exclusivity can be done in a similar way as de-
scribed in this chapter for this more expressive model. For ease of understanding
we therefore omit the phase information from the model.

An SVPDF model is a directed graph G = (V,E, P, 8, p) that consists of a set of
actors V connected by a set of directed edges E. An actor v; € V communicates to
another actor v ; by producing tokens on an edge e;; € E. Actors inan SVPDF model
are not auto-concurrent, meaning that at most one firing of an actor can occur
simultaneously. The number of initial tokens on an edge is given by § : E — Nj. In
short, §;;, are the number of initial tokens on e;;. An actor v; is enabled to fire if
there are tokens on all its incoming edges. After its firing duration p; : V' - Ny, a
token is produced on all its outgoing edges. The maximum number of tokens on

a cycle remains constant and is for example used to model the capacity of a FIFO
buffer.

An SVPDF model is structured into blocks with port actors on the edges of a block.
A block is characterized by a parameter p € P. A parameter p defines the number
of consecutive firings of actors in that block in respect to the actors surrounding
that block. The value of p is unknown during analysis and can be infinite. A

block only introduces structure and does not fire itself. Port actors are used to
provide communication between actors in and outside of a block. A port actor
either converts a token on an input edge directed from outside of a block inwards
to p tokens on its output edges or it converts p tokens to one token if the direction of
the edges is from inside a block to outside of that block. A more detailed explanation
of the SVPDF model and port actors can be found in [GHB13].

The blocks are used to describe modal behavior of an application, where it is un-
known how many iterations an application remain in a certain mode. Tasks in these
modes can interact with the environment via periodic sources and sinks. Only tasks
in the active mode can read from a source or write to a sink, such that every sample
produced by a source is only read in a single mode. Therefore an actor derived
from a source or sink is copied into every block in which it is used. Such an actor
only produces or consumes tokens if the mode corresponding to the block is active.
These sources and sinks execute periodically and therefore impose a throughput
constraint on the execution of the application.

3.7 LOCK FROM SEQUENTIAL SPECIFICATION

In this section it will be shown that a corresponding SVPDF temporal analysis
model can always be derived from a sequential OIL program in which the locks
are specified. We first derive an SVPDF model from an OIL program without
considering the locks. This is followed by the modeling of the constraints that
result from the locks. In this section the modeling approach is shown for one lock,
but the modeling of multiple locks is analogous to the modeling of one lock.

A task graph without mutual exclusive tasks can be modeled as an SVPDF model as
follows. For every task an actor is included in the model. Every buffer is modeled
by two oppositely directed edges where tokens on the edge from the producer to
the consumer represent the full locations in the buffer and tokens on the other
edge, empty locations. The initial tokens on this edge equals the buffer capacity.
For every while-loop in the OIL program a block is included in the model. If a task
contains this loop, the actor corresponding with this task is a (nested) child of the
block corresponding with this loop. Blocks are nested analogously to the structure
of while-loops in the OIL program. The value of the parameter characterizing a
block corresponds to the number of iterations of the while-loop.

We now show that the lock as generated by the method introduced in this chap-
ter can be modeled in an SVPDF model. Two cases can be distinguished in the
generation of the lock, either groups of tasks in one while-loop are made mutually
exclusive, or these groups are distributed over multiple while-loops.

We first consider the most simple case of two groups of tasks in one while-loop,
where each of the groups consists of only one task. When tasks are made mutually
exclusive this can be represented by a cycle through the corresponding actors with
one initial token on that cycle. This is illustrated by Figure 3.14a which contains
two actors corresponding with two mutually exclusive tasks. Between these two

53

& SEcTION 3.7 — LOCK FROM SEQUENTIAL SPECIFICATION

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVHD) E

(a) Model of two tasks

(c) Model of two tasks in two loops (d) Model of two groups of tasks in two loops

[2a) Figure 3.14: SVPDF models corresponding with mutually exclusive tasks

actors a cycle is added consisting of two oppositely directed edges representing the
ordering constraints enforced by the lock. The initial token on the bottom edge
indicates the task that is enabled first by the lock, i.e. the task corresponding with
the first function in the sequential ordering specified by the OIL program.

When there are multiple tasks in a group no single cycle can be created anymore
in the model because tasks in a group can execute simultaneously. Therefore, for
every group consisting of more than one task two additional actors are added to
the model. The first actor represents that all tasks in a group can start after the
tasks in the previous group have finished. The second actor represents that the
next group can only start after all actors in the current group have finished their
firing. This is illustrated in Figure 3.14b in which there are two groups of tasks.
The first group contains only one task, and thus no additional actors are required.
The second group contains two tasks and thus two corresponding actors. Two
additional actors are now added. Actor vy, allows both actors v, and v}, to start
because separate edges (vis,) and (vys, vy,) are added. Actor v, enforces that
both actors are finished before actors in the next group can fire, which is again
actor v in the figure. This is modeled by an edge from every actor in the group to
actor vi,.

When groups of tasks belonging to different while-loops, the corresponding actors
are in different blocks. The approach described above must then be modified such
that the correct rate conversion occurs by means of port actors. A port actor is
added whenever a constraint following from the lock generation crosses a while-

loop boundary and thus results in a rate-conversion. Figure 3.14c shows an example
of two groups of which the corresponding tasks are in different while-loops. In the
example a group consists of one task, and thus one actor. In the figure the cycle from
actor v to v, and back crosses four block boundaries and thus four port actors
are added. These port actors model that a task in the corresponding while-loop
can execute until the loop condition becomes false. The initial token that indicates
which actor can initially start is placed before the port actor which is located on the
outer-most block corresponding with the first while-loop in the ordering defined
by the sequential specification. In the figure this token is placed before the port
actor on the top in the left block, assuming that the left block corresponds to the
first while-loop.

Finally, groups of tasks in multiple while-loops can also contain multiple tasks per
group. This is illustrated in Figure 3.14d where the second group contains two tasks.
Here the port actors are also used to indicate the simultaneous enabling of tasks
in a group and the waiting until all tasks in a group are finished. Thus, these port
actors are used instead of the two additional actors inserted for the case shown in
Figure 3.14b.

3.8 CASE STUDY

In this section we illustrate the approach presented in this chapter by means of a
simplified WLAN 802.11g receiver application of which the OIL program is shown
in Figure 3.15. In the application, first a header must be detected by the detectHeader
function in an input stream delivered by a source ADC executing time-triggered
at 250 kHz. After a header is found it is decoded by the decodeHeader function
and then NSym symbols in the received packet are decoded by the functions in the
second inner while-loop. In the second loop, first a symbol is transformed by an fft
into the frequency domain. The resulting data is then demapped, deinterleaved and
convolutional decoded. Finally, a cyclic redundancy check (CRC) is performed to
verify the correctness of the resulting data.

From this WLAN application a task graph is extracted by the compiler with seven
tasks and seven buffers. The periodic source imposes a throughput constraint of
250 kHz which corresponds to a period of 4 ps.

In this example we assume that the detectHeader, decodeHeader and fft task execute
on the same processor and a WCET of 3 s, 1 us, and 3 s, respectively. If we allocate
a budget of 0.5 pis in a replenishment interval of 1.5 ps for these tasks then it follows
from Equation 3.1 that the WCRT of the detectHeader task is equal to 9 us. Because
the period of the source is 4 s we can immediately conclude that the throughput
constraint cannot be met.

By inserting a lock we can reduce the WCRT of the detectHeader, decodeHeader
and the fff task. We can indicate in an OIL program by means of the lock keyword
that tasks must execute mutually exclusive, as shown in Figure 3.15. The parameters
behind this keyword are groups of tasks and each group of tasks is encapsulated by

55

& SecTiON 3.8 - CASE STUDY

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVH)) E

1 lock (detectHeader) (decodeHeader);
> lock (detectHeader decodeHeader) (fft);

3
4 source ADC @ 250 kHz;
5
6

loop{
7 loop{
8 detectHeader(ADC, out vh, out h);
9 if(vh){
10 NSym’ = decodeHeader(h);
1 }
12 } while(!vh);
13 n = 0;
14 loop{
15 X = fft(ADC),
16 y = demap(x);
17 z = deint(y);
18 w = convDecode(z);
19 crc(w);
20 n’ =n + 1;

21 } while(n < NSym);
22 }+ while(1);

[2a) Figure 3.15: Simplified WLAN application

brackets. In the WLAN specification in Figure 3.15 there are two groups of tasks
behind the first lock keyword. The first group contains the detectHeader task and the
second group the decodeHeader task. As a result of the lock only one of these tasks
execute at any point in time on the processor and their execution order will be the
order from the OIL program. Behind the second lock keyword there are two groups
of tasks with in the first group the detectHeader task and decodeHeader task and in
the second group the fft task. As a result these three tasks obtain a WCRT equal
to their WCET. These WCRTs are low enough to meet the throughput constraint
given that the buffers are sized properly by making use of the SVPDF model of the
application.

The SVPDF model of the WLAN application is shown in Figure 3.16. The source is
not shown for clarity of the figure. In this figure the red dashed arrows denote the
edges added to enforce mutual exclusivity between the detectHeader, decodeHeader
and the ff tasks and between the detectHeader and decodeHeader tasks. The re-
maining tasks all run on a separate processor and therefore have a WCRT equal to
their WCET which are, in application order starting with demap, 2.5 us, 3 s, 2.5 ps
and 4 ps for crc. With this SVPDF model, buffer sizes are computed for 8y, 85y, Oy,
8y, 82 Ows Onsym 0f 1, 1, 2, 2, 2, 2, and 1, respectively.

-] Figure 3.16: SVPDF model of the application in Figure 3.15

Tine 10 us
Processorl det J——(det Jdec JEft ——fft
ade f f 1
detectHeader 0 ——{1 }
decodeHeader)
fft {2 —3
demap {2
deint
convDecode
crc
20 us
—/fft J———(det. Jdec JEft —
f f 1 t
|
(I
— T —
_J—i_l—(:u T
—3 J—¢
‘2—)—(—)—(—)

{2 |3

<] Figure 3.17: Execution trace of the WLAN application from Figure 3.16 with
mutual exclusivity applied

Figure 3.17 shows an execution trace derived with the dataflow simulator HAPI [BPvMos,

KHB16b] given the WCRTs when mutual exclusive execution is enforced. The num-

57

& SecTION 3.8 — CASE STUDY

SNOILVOITddV TVAOW NI NOLLNOAXH MSVL HAISNTOXH ATIVALAW ONIDYOINT — ¢ J4LdVH)) E

bers in the traces indicate the invocation number of the tasks. The trace is shown
for a packet size of 3 symbols. As a result of the applied locks the detectHeader,
decodeHeader, and fft task can execute on the same processor as is visualized in the
trace for Processori, instead of that 3 processors are required. This improves the
utilization of one processor and frees two other processors. The execution of the
application is pipelined and tasks belonging to different modes execute on different
processors at the same point in time despite that locks are applied. The trace shows
for example that detectHeader and deint execute in parallel.

3.9 CONCLUSION

In this chapter we presented a dataflow analysis approach that takes into account
that tasks execute mutually exclusively which improved the temporal analysis re-
sults and processor utilization. We furthermore introduced a starvation-free lock
which allows us to enforce mutual exclusive execution of tasks. This lock allows
parallel execution of tasks in a group of tasks but enforces sequential execution
between groups of tasks. A key difference with existing locks is that groups of tasks
can only acquire the lock in a predefined order.

We furthermore showed that mutual exclusive execution of tasks can be modeled in
an SVPDF model which is used for checking whether the throughput constraint is
satisfied after adding locks. This model is generated by a compiler from a sequential
OIL program that describes the modal real-time stream processing application.

We also showed that the resulting parallel task graph is deadlock-free despite that
additional constraints are introduced that enforce an execution order of groups of
tasks as a result of the locks. The task graph is deadlock-free because lock statements
are added such that no constraints are introduced that prevent the execution order
as defined by the sequential program.

The introduction of our lock in an application can improve the processor utilization
as is demonstrated using a WLAN application. In this application two locks are
introduced. Insertion of these locks reduced the worst-case response times such
that three tasks can share the same processor which improves the utilization of this
processor and frees two other processors.

59

60

COMPOSITIONAL ANALYSIS OF
MODES AND FPP SCHEDULING

ABSTRACT — The temporal analysis of modal applications where tasks are
scheduled using the FPP scheduling policy leads to very pessimistic results.
Therefore, we propose a compositional analysis approach in this chapter, that
allows modes to be characterized in isolation, even at different levels in the
hierarchy of an application. Locks and barriers are added in an application
such that the temporal behavior of modes can be characterized independently.
Existing analysis method can then be used within these modes.

Stream processing applications such as software defined radios and vision applica-
tions are typically executed on embedded multiprocessor systems under real-time

constraints. These applications often contain multiple processing modes and cyclic

dependencies. Examples of processing modes found in software defined radios

are the detection, synchronization and decoding mode. The cyclic dependencies

are a result of feedback loops and the use of bounded FIFO buffers for inter-task
communication. These stream processing applications can be described as task
graphs of which the tasks are executed on shared processors. The tasks executed

on a processor are scheduled according to a scheduling policy. In Chapter 3, we

only addressed the analysis of modal applications with budget schedulers. Exam-
ples of other scheduling policies are RR and FPP. Currently, however, there is no

suitable temporal analysis technique available for modal applications that supports
this broader class of scheduling policies.

This chapter is based on [GK:3].

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

The minimum throughput of a modal stream processing application can be deter-
mined using dataflow analysis techniques given a VPDF [WBS1o0] or a Finite State
Machine-based Scenario-Aware Data-Flow (FSM-SADF) [GS10] model if budget
schedulers are applied [WBSo7a, WBSo9]. An example of a budget scheduler is
Time Division Multiplex (TDM). For these budget schedulers it is possible to de-
rive the worst-case response time of each task independently of the schedule of the
other tasks, after which a compositional temporal analysis method can be applied.

However, many embedded operating systems only support the FPP scheduling
policy. Dataflow analysis techniques for systems that use FPP have recently been in-
troduced for multi-rate applications that can be modeled as SDF graphs [HGWB14].
However, there is currently no temporal analysis technique for modal stream pro-
cessing applications that contain cycles and that are executed on multiprocessor
systems which make use of FPP task scheduling.

In this chapter, we present a compositional temporal analysis approach for modal
stream processing applications executed on multiprocessor systems using FPP task
scheduling per processor. A compiler inserts locks and barriers in the application
such that the temporal behavior of each application mode can be characterized in
isolation. The locks ensure that tasks belonging to different modes do not interfere,
and the barriers make the response times of the tasks independent of the produc-
tion moments of tasks that belong to other modes. The locks and barriers result
in additional constraints that are included in a hierarchical SVPDF model of the
application. This model is used to verify the satisfaction of the throughput con-
straint and to compute the required buffer sizes by recursively applying a recently
introduced dataflow analysis technique. Furthermore, it is shown that the approach
supports response times of tasks larger than the period of the source, and allows the
use of budget scheduling besides FPP scheduling. The applicability of the approach
is demonstrated using a IEEE 802.1p (WLANp) application. This application can
be executed in a pipelined fashion despite the additional constraints introduced by
the locks and barriers.

The outline of this chapter is as follows. We first discuss related work in Section 4.1.
The basic idea behind our analysis approach is presented in Section 4.2. Section 4.3
describes the analysis flow we use to analyze modal applications. In order to be
able to verify if a periodic source can execute strictly periodically when switching
between modes, additional constraints are introduced into the SVPDF model as
described in Section 4.4. The response time equations that are introduced in Sec-
tion 4.5 can be used to apply the presented analysis approach to systems in which
also other scheduling policies are applied than FPP. Conditions under which re-
sponse times larger than the source period are allowed are stated in Section 4.6.
The applicability of the analysis approach is demonstrated in Section 4.7. The con-
clusions are stated in Section 4.8.

4.1 RELATED WORK

In this section we first address related analysis approached for modal time-triggered
systems. Then we switch to data-driven approaches and focus on modal dataflow
models. Analysis of FPP scheduling for dataflow graphs is discussed and finally
analysis of budget scheduling for modal dataflow graphs.

Mode changes in FPP scheduled single processor systems have been studied ex-
tensively [S*89, TBWo92a, Guaogb]. These works present analysis techniques to
determine whether deadline misses can occur during a mode change. Overloads
can be prevented by the schedulers by delaying the release of tasks [RCo4a]. A
limitation of these techniques is that the next mode transition may only be started
after the previous mode transition is completed. Furthermore, these techniques are
only applicable for acyclic task graphs.

Dataflow models are applicable for cyclic task graphs, and a number of dynamic
dataflow models have been developed that are also suitable for modal stream pro-
cessing applications. In the FSM-SADF [GS10, vKSG1y] dataflow model modes
are described as scenarios where the possible transitions between scenarios are
encoded in a non-deterministic finite-state-machine. In [vKSG17], the FSM-SADF
model is extended to allow switching scenarios at run-time by executing sequences
of scenarios. Processor sharing can be supported if schedulers are applied that
belong to the class of budget schedulers to which TDM schedulers belong.

In this chapter, we use the SVPDF [GHB14] model that allows a hierarchical de-
scription of nested modes in an application. The dependencies are explicit in this
model and it has been shown that a deadlock-free model and implementation can
be automatically derived from a sequential description of an application in the Om-
phale Input Language (OIL) [GHB13]. The SVPDF model has only been used in
combination with budget schedulers. In this chapter, however, we will show that
the SVPDF model can be used if FPP schedulers are applied.

Throughput analysis of systems with multiple applications that are modeled as
Mode-Controlled Dataflow (MCDF) and scheduled by FPP has been presented
in [LMvBi5]. However, this approach only addresses interference between tasks
that belong to different applications, while in this chapter we derive the interference
between tasks of the same application.

Only recently, a throughput analysis has been introduced in [HWGB13] for multi-
rate applications that are modeled by SDF graphs and that are executed on multipro-
cessor systems using FPP schedulers. By introducing an enabling rate characteriza-
tion in [HGWB14], the accuracy of the analysis technique is improved. The analysis
flow based on the enabling rate characterization is further improved in [WHGB14]
by taking into account that cyclic dependencies limit the maximum interference
between tasks. We make use of this observation in this chapter, since we introduce
cycles to make the execution of tasks mutually exclusive.

Locks have been introduced in Chapter 3 for modal applications that make tasks

63

& SecTION 4.1 - RELATED WORK

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

scheduled by budget schedulers mutually exclusive, which can improve the accu-
racy of dataflow analysis. In this chapter we generalize that approach for budget
schedulers, making it applicable for systems with FPP schedulers.

4.2 BASIC IDEA

In this section, we use a didactic example to explain the basic idea behind our com-
positional temporal analysis approach. This approach is suitable for modal stream
processing applications that are executed on multiprocessor systems using FPP
task scheduling per processor. The periodic source in these applications imposes a
throughput constraint.

The task graph used in our didactic example is derived by a multiprocessor compiler
from the OIL program that is shown in Figure 4.1a. An OIL program is a kind of
C-program with some adaptations that facilitate automatic parallelization. The OIL
program contains two potentially endlessly iterating while-loops, where each while-
loop corresponds to a mode. After parallelization, the task graph in Figure 4.1b is
obtained. Each task in the graph corresponds to a function in the OIL program,
e.g. T, corresponds to function a. The color of a task represents the mapping to
a processor. Each FIFO buffer in the task graph corresponds to a variable that is
communicated between two functions.

The source task, 7,,., executes strictly periodic and only produces data for a single
mode. The source task therefore has two output buffers such that data can be sent
to one of the task reading from it, either 7, or 7. The buffer that the source writes
to is determined by the loop conditions in the sequential OIL program, which can
change after every execution of the source task.

Besides a task graph, also an SVPDF dataflow model is created by our compiler. This
model contains nested blocks where each block corresponds to a while-loop in the
OIL program, as is described in more detail in Section 3.6. These blocks are depicted
as dashed rectangles in the SVPDF model. The actors in a block correspond with
the functions inside the while-loop. The SVPDF model that corresponds to our
didactic OIL program is shown in Figure 4.1c. The nodes on the boundaries of the
dashed rectangles are called port actors. The port actors at the inputs of a block
perform up-sampling, i.e. multiply the number of tokens with a factor that is equal
to the number of iterations of the while-loop. The port actors at the outputs of
a block perform down-sampling. Only after the last iteration of a loop, a token
is produced at the output of such a port actor, for other iterations no tokens are
produced. Port actors have by definition a firing duration equal to zero. The other
actors have a firing duration that corresponds to the response times of the tasks.
Derivation of these response times is discussed in subsequent paragraphs. The solid
black edges between the actors in the SVPDF model denote dependencies between
actor firings. The use of FIFO buffers with a bounded capacity in the task graph
results in cyclic dependencies in the SVPDF model. The number of tokens on a
cycle in the SVPDF model corresponds to the capacity of a buffer. The reason for the

1 source ADC @ 250 kHz;

> loop{

3 loop{

4 x=a(ADC) ;

5 Y=b();

6 }while(..);

7 loop{

8 z=d(Y);

9 c(ADC, x, z);

10 }while(..);
11 } wh11e(1),

(a) Modal OIL program

(c) SVPDF model of Figure 4.1a including additional constraints of a lock and barriers

2] Figure 4.1: Example of a modal program and the corresponding task graph and
dataflow model

inclusion of the other edges in the SVPDF model will be explained in subsequent
paragraphs.

The SVPDF model is the input of our compositional temporal analysis method
which is described in Section 4.3. This method requires that response times of tasks
can be determined independently of when tasks in other modes execute. Given that
the response times are independent then the firing durations of the actors in one

mode are also independent of the firing durations of the actors in another mode.

Because the firing durations are independent we can analyze whether each deepest
nested block fulfills the constraints imposed by the source independently of other
blocks. After this is confirmed, we can ascend the hierarchy of blocks and perform

65

& SECTION 4.2 - BASIC IDEA

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

the same analysis on the next hierarchical level of the SVPDF model.

The fact that response times of tasks in one mode can be analyzed independently
of tasks in another mode is achieved by making use of locks and barriers. Locks
prevent that tasks belonging to different modes can execute at the same moment
in time by making tasks in different modes, but mapped to the same processor,
execute mutually exclusive. Barriers are used to verify that all inputs of a mode
are available before the periodic source in a mode finishes its first execution. As
a result, the response times can be determined relative to the executions of the
periodic source in a block and become independent of the production moments of
tasks that belong to other modes.

Dataflow analysis for systems that make use of nonstarvation-free schedulers such
as FPP has been described in [HWGB13, HGWB14]. These approaches make use
of a slightly modified version of the WCRT equation that has been proposed by
Tindell [TBWo4]. This response time equation computes a so-called busy period
which calculates the maximum time it takes to finish g executions of 7; and is
defined as:

wi(q)=q-Bi+), [W]'Bj (4.1)

jehp(i) i

where J; is the jitter in the so-called external enabling time of 7, which, on average,
executes periodically with period P;. We use hp(i) as the set of tasks executing on
the same processor with a priority higher than ;. The external enabling time of a
task is defined as the time at which the task can read sufficient locations from the
adjacent buffers. Only values of g for which it holds that w;(q) > q - P; need to be
considered in Equation 4.1 according to [TBWg4].

According to [HWGB13, HGWB14] is the worst-case response time relative to the
external enabling time of a task equal to:

Ri= max(wi(q) - (4 -1)- P1) (4.2)

From Equation 4.1 and Equation 4.2 we conclude that the WCRT of 7; depends on
the jitter J; of the inputs of the higher priority tasks on the same processor. These
inputs can be produced by tasks in a different mode. As a result, the WCRT of 7;
cannot be determined independently of the tasks in other modes, because the jitter
can be a result of the jitter in the finish times of tasks in other modes. This is even
the case if the execution of these tasks has been made mutually exclusive by making
use of locks. Therefore, besides the locks, also barriers are needed to make the jitter
of tasks in a mode independent of the production moments of tasks that belong to
other modes.

Barriers are used to guarantee that none of the tasks in a mode can start before
all inputs for that mode are available and the source inside the mode fires. By
introducing barriers, actors that are not on a path from the source without initial
tokens on it, like v 4, are delayed. These actors execute time-triggered since they are

2™\

(adcy

) _—
]in
]inz '
iny » out,

4 5
time (us)

[2a] Figure 4.2: Barrier at ¢ = 4us guarantees that no task belonging to a mode can
start before all inputs are available and the source of that mode finishes its firing

enabled by the periodic source instead of being enabled by an input of the mode
they are in. Therefore, the start times of v. and v4 in Figure 4.2 are only related to
the time that the source actor, adc,, in the mode fires and not to the arrival times of
the input data. As a result, the jitter in the production moments of tasks outside a
mode has no influence on the jitter on the enabling time of the tasks that belong to
the mode. Therefore response time are also independent of the jitter on the inputs
caused by task outside the mode.

A barrier in the implementation is modeled with additional dependencies in the
SVPDEF model. These dependencies are depicted as orange dashed arrows in Fig-
ure 4.1c. Moreover, the locks which make the execution of tasks mutually exclusive
are modeled with the red dotted edges in Figure 4.1c. These edges in combina-
tion with a single token on the cycles created by these edges guarantee that actors
belonging to different blocks, and thus modes, can not fire simultaneously.

4.3 ANALYSIS FLOW

In this section, the applied temporal analysis flow is presented. In this flow, blocks
in the SVPDF model are analyzed recursively, starting at the deepest nested blocks
in the model, and subsequently one level upwards at a time after flattening the
blocks of a hierarchical level. The temporal analysis flow incorporates the flow
presented in [WHGB14] for the computation of the worst-case response times of
the tasks. We first present an overview of the steps in the analysis flow after which
the flattening step in the flow is explained in more detail in Subsection 4.3.1.

The applied analysis flow is shown in Figure 4.3. This flow is used to verify whether
the temporal constraint imposed by the periodic source (sink) in the blocks can be
satisfied. The periodic source must be able to fire strictly periodic, such that there
are always sufficient tokens on all the incoming edges at the start of a new periodic
firing. To verify these constraints the worst-case response times of the tasks are
computed. The last step in the flow computes sufficiently large buffer capacities.

67

& SECTION 4.3 — ANALYSIS FLOW

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

{0 Application characteristics]

/
/

1 Construct SVPDF /
graph & insert lock /
and barrier constraints ! ‘

‘ / ‘ 2b Adapt actor 1

[Za Compute response times]«

1
I
I
I
|
|
|
|
:
I

2 Determine response : firing durations

times at deepest level : ‘

:

|

|

|

I

I

I

I

I

I

|

2¢ Compute schedules
and derive jitter

analyzed all
blocks at level

3 Flatten one hierar-
chical graph level

}

Top level?

[4 Buffer sizing]

[al Figure 4.3: Overview of the analysis flow for modal applications

The analysis flow in Figure 4.3 contains five steps of which some of the steps are
executed repeatedly. Step 2 consists internally of three steps which are executed
repeatedly. In step o, the input information for the analysis flow is gathered. This is
the information about the topology of the task graph, the task-to-processor assign-
ment, the applied task scheduling policy for each processor including the schedul-
ing parameters such a priorities, worst- and best-case execution times of the tasks,
and the temporal constraints imposed by the periodic source and/or sink inside a
block.

Based on the nesting of the functions in an OIL program, an SVPDF model is
generated in step 1. Locks and barriers are inserted to enable compositional analysis
of blocks as discussed in Section 4.2. As a consequence, the response times of tasks
belonging to a mode can be determined by analyzing each mode in isolation.

In step 2a of the flow, a lower and an upper bound on the response time of the
tasks in a block at the deepest hierarchical level is computed. This is done under
the assumption that the inputs of the block have arrived before the source of the
task has finished its execution, which is verified later. These response times are

<] Figure 4.4: An SVPDF model with nested blocks

used to update the minimum and maximum firing durations of the actors in the
SVPDF model in step 2b. Two periodic schedules are computed using these firing
durations, which bound the start times of the actors. From these start times, the
jitter in the production moments of the actors is computed. Given these jitters the
response times are recomputed in step 2a, 2b, and 2¢, which are repeated until the
jitters and response times remain unchanged, or exceed a predefined limit. Step 2
is repeated until all blocks at the deepest hierarchical level have been analyzed.

Once the response times of all the tasks at the deepest hierarchical level have been
computed the modes at that level are flattened in step 3. The flattening step is
described in more detail in the next section.

Step 2 and 3 are repeated until all levels in the hierarchy of the application are
flattened and the top level is reached, or a violation of the temporal constraints
is detected. The order in which modes are flattened is explained using Figure 4.4
which shows the nested block structure of an SVPDF model. The different shadings
of gray in the figure reflects the hierarchical level of a mode. Blocks in the same
hierarchical level have the same shade. In the first iteration of the analysis flow the
modes at the deepest level are analyzed, i.e., mode 1 and 2. After these modes are
flattened, mode 3 and 4 are analyzed at the next hierarchical level. Finally, mode 5
can be analyzed after all other modes have been flattened.

In the final step of the flow, the buffer capacities are determined, given the computed
best-case and worst-case schedules for the actors in each of the blocks.

4.3.1 FLATTENING OF A HIERARCHICAL LEVEL

The flattening step of the analysis flow removes the hierarchical boundaries of the
blocks of one hierarchical level in an SVPDF model. This step is performed after
the response times of the actors in the blocks at one hierarchical level have been
derived using the analysis flow in Figure 4.3. In the remainder of this section we
will first describe how a hierarchical level can be flattened. Next, we introduce the
constraints on the flattening step imposed by the periodic source. Finally, we will
discuss the consequences of a flattened block on the jitter and response time of
tasks at a higher hierarchical level.

69

& SECTION 4.3.1 - FLATTENING OF A HIERARCHICAL LEVEL

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

o Le

(a) Hierarchical SVPDF model (b) HSDF model

2] Figure 4.5: Flattening an example of an SVPDF model into a HSDF model

The WCRT of tasks can be calculated under the assumption that tasks in a block
execute an infinite number of times. This is possible because the WCRT equation
as stated in Equation 4.2 assumes an infinite number of executions of strictly peri-
odically executing tasks. However, tasks in a block do not execute after a switch to
a different block. Therefore the tasks do not execute infinitely often. However, tasks
that do not execute, do not cause interference, which reduces the response time.
The actual number of times a task executes depends on the value of a so-called
parameter [GHB13] of a block, which indicates how often a block will execute. The
parameter can range from one to infinite and is only a modeling construct without
a counterpart in reality. Therefore an upper bound on the actual response time
of the tasks in a block can be calculated by assuming that tasks in a block execute
infinitely often.

The structure in an SVPDF model allows blocks to be flattened. A block is flattened
by setting the response times of tasks inside the block to the WCRT calculated under
the worst-case assumption that tasks in a block execute infinitely often. Therefore,
the WCRT is valid for every possible parameter value. As a result, only a single
iteration of the block needs to be considered at higher hierarchical levels. In the
SVPDF model a single iteration of a block is equal to a parameter value of one
of the corresponding blocks. A parameter value of one flattens the block, since
the boundaries of a block and the port actors become redundant because up- or
down-sampling of tokens is not needed anymore. Therefore, the SVPDF model
in Figure 4.5a can be flattened into the HSDF model shown in Figure 4.5b. The
flattened model can be analyzed using the approach presented in [WHGB14], which
is applied in step 2 of our flow.

A flattened block should still adhere to the constraints imposed by the periodic
source inside the block. The constraints are a result of the source task in an appli-
cation that must be able to execute strictly periodically independent of the block
that is active. Two constraints must therefore be satisfied [GHB13]. The first one
states that when the same block is executed repeatedly the source actor in that
block should execute periodically. The other constraint that must hold is that the
source in the block after a mode switch must execute exactly one period after the

last execution of the source in the previous block. The first constraint is fulfilled
by enforcing that a strict periodic schedule is computed for the source actor in a
block. The second constraint is verified in the analysis flow, as will be discussed in
Section 4.4. Satisfaction of both constraints indicate that a schedule is valid for all
parameter values.

Now, it might appear that flattening a block is not allowed because the production
moments of tasks in nested blocks seem to depend on the number of iterations a
block is executed. For example, in Figure 4.5a the enabling of v; depends on the
finish time of the p’th execution of v;,. The enabling jitter of v, therefore appears
to depend on the block parameter value p which would prevent the block to be
flattened. However, we can use the fact that the computed schedules of the actors
in a block are periodic. The actual start time of an execution of a task 7; will be in
between the schedule that forms a lower bound, §;, and the periodic schedule that
is used as an upper bound, §;. Therefore we can conclude from Equation 4.6 that
the enabling jitter of v, is independent of p.

Ja(p) =384~ 34 (4.3)
= (8 (p) +pp) — (S (p) + Pb) (4.4)
=Sy +(p-1) Py =3, +(p=1)- P+ pp— P (4.5)
=8, —Sp+Pp— P (4.6)

In the equations above] ;(p) is the enabling jitter of v for iteration p, §; the latest
possible enabling time of v; in the periodic schedule and $; the earliest possible
enabling time. The jitter caused by 7}, itself depends on its maximum firing du-
ration pj, and minimum firing duration g;. Because the enabling jitter for v; is
independent of p, we can use a single iteration of a block for the calculation of the
enabling jitter of actors at a higher hierarchical level.

The response time of tasks at a higher hierarchical level can be calculated by setting
the parameters of the nested blocks to one, because this results in the maximum
interference for tasks at a higher level. The response time for the tasks at a higher
hierarchical level is determined by the response time, period, and jitter of tasks at
that level according to Equation 4.2 after additional constraints are added to ensure
that blocks can be analyzed in isolation. The jitter caused by tasks in nested blocks
is independent of the parameter value of that block, according to Equation 4.6 as
explained in the previous paragraph. Increasing the parameter value of a block
changes the period of the tasks at a higher hierarchical level. Executing a nested
block more often results in a less frequent execution of the tasks at a higher hier-
archical level. The period of these tasks is thus effectively increased by executing
nested blocks more often. An increase of the period of tasks results in lower worst-
case response time according to Equation 4.2. The worst-case response times are
therefore also independent of the parameter value of a block. Therefore, the min-
imal parameter value of one can be used for nested blocks to calculate an upper
bound of the response time of tasks at higher hierarchical levels.

71

& SECTION 4.3.1 - FLATTENING OF A HIERARCHICAL LEVEL

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

As an example, consider flattening of the nested block in the SVPDF model in
Figure 4.5a, such that the response time of the tasks at the highest level in the model
can be determined. First, the response times of tasks 7;, and 7, at the deepest nested
level are determined by analyzing their blocks. The blocks are flattened by fixing the
response times of these two tasks to the computed worst-case response times, and
removing the boundaries of the blocks as shown in Figure 4.5b. Using fixed values
for the response times of the tasks in nested blocks is allowed since the additional
constraints that are a result of the added locks and barriers ensure that tasks outside
a block cannot increase the response time of tasks inside a block. After the nested
block are flattened, the response times of 7,, 7. and 7,4 can be calculated.

Flattening of a hierarchical level removes some potentially useful information. Con-
sider again the SVPDF model shown in Figure 4.5a where the colors represent the
mapping to a processor. On one processor, we have that v, has a lower priority then
v4. The time at which v; becomes enabled is dependent on p. From a certain value
of p, v, will always finish before v, is enabled and therefore v, will not interfere
with v.. The knowledge about a minimum number of block executions can be used
as offset information to obtain a less pessimistic response time for v.. The use of
offset information to obtain more accurate results for cyclic applications that do
not contain modes is presented in [KHB16a].

4.4 PERIODIC SOURCE CONSTRAINTS

In this section, we derive the conditions that need to be satisfied for applications
containing multiple modes in which the same source is accessed. Additional con-
straints need to be introduced to verify that the source task can execute strictly
periodically when switching between modes.

The source task in an application needs to execute strictly periodically. Therefore,
the N actors derived from the source task, for all N blocks where the source is read,
need to fire periodically. The source actors fire periodically when the time between
the start times of firings of the same, or consecutive source actors, is exactly one
period P; of the source task. The two additional constraints in Equation 4.7 and
Equation 4.8 on the start times of the source actors, v{ with g € {0,1,...,N -1},
are therefore added.

$1(i+1) =82(i) + P, (4.7)
slarbmedN 1y 2 59(4) + P, (4.8)

where $(i) is the upper bound on the start time of source actor v{ in iteration
i € Ny if that source actor fires in iteration i. The constraint in Equation 4.8 is
added in step 2c of the analysis flow presented in Section 4.3. This constraint is
added in the hierarchical level where all the blocks containing source actors are
flattened such that each source actor fires only once before switching to the next
source actor.

As a result of the added constraints the source actors must fire strictly periodically.
A delay in the enabling time of a source actor will immediately lead to a violation
of the throughput constraint in the block one level higher in the hierarchy than the
blocks containing the source actors, which is 2P; in the example since there are
two source actors. A delay in the enabling of a source actor occurs when the inputs
of a mode arrive too late and the constraints resulting from a barrier do not enable
the source actor in time. A violation of the throughput constraint occurs when the
sum of the response times of the tasks on the path of edges without tokens from
one source actor to the next source actor, via the constraint that result of locks and
barriers, is larger than one period. An example of such a path is seen in Figure 4.1c
from actor src, to v4, v, via the red dotted and orange dashed edges originating
from a lock and barrier to src;. The combination of the constraints of the strictly
periodic executing source and the barriers and locks ensures that mode transitions
can be analyzed.

4.5 RESPONSE TIMES

In the previous sections, constraints are enforced to enable independent analysis of
modes. In this section, a general WCRT equation is derived that makes use of the
fact that modes can be analyzed in isolation after additional constraints are added
in the dataflow model. The equation is valid for schedulers in the non-starvation-
free class which includes FPP, RR and TDM schedulers. We make use of the proof
that the constraints resulting from locks prevent any interference of tasks in other
modes as is given in Subsection 4.5.1.

In general, the WCRT R; of a task 7; consists of its WCET B; and an upper bound on
the interference I of tasks assigned to the same processor, as shown in the following
equation:

jzi =B; + Ischeduler(i>ﬁi) (49)

The interference depends on the type of scheduler used on a processor. We will first
consider FPP schedulers and limit R; to P;, to satisfy the constraints presented in
Section 4.4. Since this limitation implies that w; < P, only a single execution of 7;
needs to be considered such that g = 1. The WCRT of Equation 4.2 can then be
simplified to the following equation for the interference on 7;:

Ippp(i,At): Z []J+At]B] (4.10)

jehp(i)~M(i) P;

where M (i) is the set of tasks in another mode as 7; that is made mutually exclusive
to 7; using a lock. Using the prove given in Subsection 4.5.1 the set of interfering
tasks is reduced to tasks in the same mode by using locks. For RR and TDM sched-
ulers a similar expression can be derived where the interference is a summation
over the tasks assigned to the same processor. The following equation for the inter-

73

& SECTION 4.5 - RESPONSE TIMES

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

ference for the different types of schedulers is obtained:

IRR(i,At) = Z B] (4.11)
JET (i)NM(i)

Irpm (i, At) = [%] “(Qm = Si),

where Q,, = S; + s
JET (I)NM(i)

(4.12)

where §; is the budget of 7; within replenishment interval Q,, within mode m and
T (i) the set of tasks mapped to the same processor as 7; excluding 7; itself. We have
shown that for FPP, RR and TDM schedulers an upper bound on the interference
can be derived only consisting of interference of tasks within the same mode as the
task being analyzed.

4.5.1 MUTUAL EXCLUSIVE EXECUTION USING LOCKS

In this section, we prove that the constraints imposed by a lock ensure that tasks in
different modes will not interfere with each other and therefore execute mutually
exclusive.

For HSDF graphs it has been proven that the number of tokens on a cycle deter-
mines the interference of tasks on the cycle [WHGB14]. A cycle with one token
on it, as shown in Figure 4.6a, prevents interference between actor x and y and
therefore these actors will fire mutually exclusively. In this section, it is proven that
this also holds for two actors in different blocks in an SVPDEF graph, like the one in
Figure 4.6b. If the actors belong to the same block, then they potentially interfere.

The SVPDF graph in Figure 4.6b has two actors x and y in different modes, A and
B, and the edges represent the constraints that are a result of a lock. Any number of
modes and tasks within a mode is supported by the lock, but in the proof we will for
clarity only consider two modes each containing a single task. In the proof we will
make use of the following notation: a < b means a dependency from a to b, s,(n)
is the start of firing n € Ny of actor 4, f,(#) is the finish of the #n-th firing of actor
a. Function ¢4 (n) € Ny returns the block iteration counter in which firing n of an
actor in block A takes place. A new block iteration is started when the next token
is consumed by all port actors of the block. Similarly the function ¢g(n) € Ny
returns the block iteration counter in which firing n of an actor in block B takes
place. Also functions that indicate the start and finish time of an iteration of a block
are defined.

By definition an actor x can cause interference on an actor y when actor x finishes
its n-th firing later than the start of the m-th firing of y. Similarly an actor y can
cause interference on an actor x when actor y finishes its m-th firing later than the
start of the n-th firing of x. Two actors x and y fire mutually exclusive if x cannot
cause interference on actor y, and y can not cause interference on actor x. That
this holds for the actor x and y in the different blocks in Figure 4.6b can be seen as
follows:

(a) HSDF graph consisting ~ (b) SVPDF graph consisting of two modes, A and B, each
of actor x and y containing one actor, x or y

] Figure 4.6: The constraints resulting of a lock for an HSDF model ((a)) and an
SVPDF model ((b))

The edge e, represents a dependency. As a result of this edge it holds that:

fo(n) < fa(pa(n)) < s5(ps(m)) <s,(m),
{n.meNo | pa(n) =gp(m)} (4.13)
Since it holds that f4(@a(n) —1) < fa(pa(n)) it follows from Equation 4.13 that:

Fon) <s,(m), {nm € No | ga(n) < pp(m)} (414)

Now we have that x can only cause interference on actor y according to Equa-
tion 4.14 if:
¢a(n) > ¢p(m) (4.15)

A similar reasoning holds for the edge e,. which has one initial token. This initial
token causes that the start of the z-th block iteration of A depends on the finish of
the (z — 1)-th block iteration of B. Therefore it holds that:

fy(m) < fa(9n(m)) <sa(pa(n) 1) < s:(n),
{n,meNo | pp(m) = pa(n) -1} (4.16)

Since fg(¢p(m) —1) < f(pp(m)) it follows that:
fy(m) <sx(n),{n,meNo [pp(m) < pa(n) -1} (4.17)

We have that the m-th firing of actor y can only cause interference on the n-th
firing of x if the m-th firing of y can finish later than the n-th start of x, which is
true according to Equation 4.17 if:

pp(m) > @a(n) -1 (4.18)

Therefore there is no interference from actor x on y and from actor y on x if Equa-
tion 4.15 and Equation 4.18 hold, thus:

pa(n) —1< gp(m) < pa(n) (4.19)

75

& SECTION 4.5.1 - MUTUAL EXCLUSIVE EXECUTION USING LOCKS

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

Because there is no block iteration counter value ¢p(m) for which Equation 4.19
holds we conclude that the actors x and y do not interfere and therefore fire mutu-
ally exclusive, which concludes the proof.

The proof remains valid for g consecutive executions of an actor x starting at firing
n. This is because these consecutive executions must belong to the same block
iterations such that 4 (n + q — 1) = pa(n). As a consequence, Equation 4.19 still
holds since there is no block iteration counter value ¢ (m) for which actors x and
y can interfere.

4.6 RESPONSE TIMES LARGER THAN PERIOD

The approach presented in the previous sections is only applicable if all tasks have a
WCRT smaller than the period of the source. In this section, we present conditions
under which WCRTS: larger than the period are possible, however, our impression
is that these conditions will be rarely satisfied in practice.

The approach presented in the previous sections does not allow WCRT larger than
the period of the source as a result of the barriers. These barriers were introduced
to take care that the arrival times of the input data of a block could not affect the
response times of the tasks in that block. However, the jitter in the arrival times of
the input data can only have an effect on other tasks if these tasks have a sufficiently
high priority or have a dependency towards other tasks. If this is not the case then
there is no need for the barrier and WCRT larger than the period of the source
can be allowed. The simplified WCRT equation derived in Section 4.5 is invalid for
tasks with a response times larger than the period, since multiple executions of a
task need to be considered as is accounted for in the equation stated in Equation 4.2.

Summarizing, the constraint of a barrier for a task are only allowed to be remove
if the task cannot cause interference on other tasks. This can only be fulfilled if the
tasks has:

» No tasks with a lower priority mapped to the same processor

» No dependencies within mode, excluding all port actors

In Figure 4.7, a constructed example is shown that illustrates a case in which the
barrier can be removed for some inputs of a block. This allows a WCRT larger than
the period of the source, which must be compensated for in a subsequent mode.
In this example, there are five tasks divided across two modes. Task 7, 7; and 7,
share a processor, as indicated by the colors of their actors, where 7, has a high
priority and 7, a low priority. The WCET of 79, 75, and 74 is iP and 17, and 13
have a WCET of %P. Only 73 has a BCET not equal to its WCET and is assumed to
be 0 and therefore v3 will introduce a jitter in the enabling time of v;. Based on this
jitter, T; can pre-empt 7, not only once, but twice during 7,’s execution, increasing
ﬁz to liP .

2] Figure 4.7: SVPDF model of an application where the WCRT of v, can be greater
than the period of the source

When the dependencies resulting from the barrier would be introduced from the
port actor producing the input of v, then an R, > P will lead to the conclusion
of infeasibility given that the source period is P. However, in this example 7, is
allowed to be enabled earlier or later than the source actor starts in its corresponding
block. The enabling jitter that can be caused by removing the dependency from the
input that is a result of the barrier will not cause interference on other tasks in this
example, since 7, cannot interfere because it has the lowest priority. Moreover, the
jitter of 7, is not propagated to the other tasks because there are no dependencies
to other tasks and therefore there is no increase of the jitter of other tasks. The large
WCRT of 1, in this case is compensated by the sufficiently small WCRT of 7y and
74 in the other mode, because the sum of their WCRTS is within the constraint of
one execution of a source in each mode, which takes 2P.

4.7 CASE STUDY

In this section, the analysis approach that has been introduced in this chapter is
demonstrated using a simplified WLANp receiver application. The organization
of this section is as follows. First we describe the application of which a dataflow
model will be derived that includes the constraints that are a result of locks and
barriers. We apply temporal analysis to this model to determine the WCRTs of
tasks and the buffer sizes. A simulator is used to verify the analysis results and to
generate a trace of the executions of the tasks on shared resources. Finally, we show
that a pipelined execution of tasks is supported although additional constraints are
introduced in the application.

The OIL program of the WLANp application is shown in Figure 4.8. The application

77

& SecTION 4.7 — CASE STUDY

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

1 source ADC @ 250 kHz;

3 loopq{

+ loop{

s h = detectHeader(ADC);
6 vh = validHeader(h);

7 NSym’ = decodeHeader(h);
8 } while(!vh);

9 n = 0;

10 loop{

1 X = fft(ADC),

12 y = demap(x);

13 z = deint(y);

14 w = convDecode(z);

15 crc(w);

16 n’ =n + 1;

17 } while(n < NSym);
18 + while(1);

2] Figure 4.8: WLANp receiver application

receives its input from a periodic ADC running at 250 kHz (a period of 4 us). This
source imposes a throughput constraint on the execution of the application.

The WLANp application contains two modes. Each mode corresponds to a poten-
tially endlessly repeated while-loop.

In the first mode the detectHeader function reads symbols from the source until
it detects a header of a packet. The decodeHeader function extracts the size of the
payload from the header while the validHeader function determines in parallel
if the checksum of the header is valid. Only when a valid header is found the first
mode is left as is specified in the loop condition.

The £ft function in the second modes reads a number of symbols from the source
based on the size of the payload and performs a transformation to the frequency
domain on each of these symbols. The other functions in this mode perform demap-
ping, deinterleaving, convolution decoding and verification of the CRC. The num-
ber of loop iterations in this mode is dependent on the result of the first mode and
can be determined before tasks in the second mode start.

The multiprocessor compiler Omphale [GHB13] is used to transform the program
shown in Figure 4.8 into a task graph where each function results in a task. The
variables used in the program are converted into buffers to allow a pipelined execu-
tion of the tasks. The WCET: of the detectHeader, validHeader and decodeHeader
tasks are assumed to be 2 s, 1 us and 1 ps as is shown in Table 4.1a. The fft, demap,

[al Figure 4.9: SVPDF model of the application in Figure 4.8 including additional
constraints of a lock and barriers

deint, conv and crc tasks in the second mode have an execution time of 3 ys, 1.5 s,
2 s, 1.5 ps and 2 s respectively.

In this case-study we assume there are more tasks than processors. Therefore,
multiple tasks are scheduled onto a processor using a scheduling policy. Multi-
ple scheduling policies are used for different processors to demonstrate that the
approach presented in this chapter can also be used for other schedulers than the
FPP scheduler. Tasks validHeader, decodeHeader, and fft are scheduled by an FPP
scheduler on one processor. On that processor task decodeHeader has the highest
priority and task validHeader the lowest priority. Another processor runs the tasks
deint, and crc using a RR scheduler. A budget scheduler is used on another proces-
sor to schedule the tasks demap and convDecode. Both tasks are allocated a budget
of 0.5 us every 1 ps. The remaining task detectHeader runs on a dedicated processor.

79

& SecTION 4.7 — CASE STUDY

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

B8 Table 4.1: Temporal analysis results of the WLANp application

(a) Task execution times and derived re- (b) Derived buffer ca-
sponse times pacities
task WCET (us) R (us) buffer capacity
detectHeader 2.0 2.0 on 1
decodeHeader 1.0 1.0 Svn 1
validHeader 1.0 2.0 Ox 2
f 2.5 2.5 8, 2
demap 1.5 3.0 8z 2
deint 2.0 2.0 SOw 2
convDecode 1.5 3.0 ONgym 1
cre 2.0 4.0 O1c, 1
Olc, 4

In order to verify the temporal constraint imposed by the periodic source, the com-
piler also generates an SVPDF model besides the task graph. An actor is introduced
for each task in this model as is shown in Figure 4.9. The blocks in the model corre-
spond to while-loops in the application. The colors of the actors correspond to the
mapping to a processor. Buffers are represented as a forward and backward edge
containing the number of tokens corresponding to the capacity of the buffer. Since
the validHeader, decodeHeader and fft tasks run on the same processor, but do no
not belong to the same mode a lock is added. The analysis flow requires a strictly
periodic execution of the source to be able to determine response times for an
FPP scheduler. Therefore, additional constraints on the start times of source actors
are added in step 2c of the analysis flow. The precedence constraints that results
for the lock are represented in the model by the red dotted edges. The additional
constraints that are a result of the barriers are shown as the orange dashed edges.

Using the analysis flow as defined in Section 4.3 and the response time equation
Equation 4.9 of Section 4.5 we derive WCRTs for the tasks in these two modes. The
resulting WCRTs are listed in Table 4.1a. Table 4.1b shows the computed buffer
capacities given these WCRTSs. The last two buffers in the table, §;, and d;,, rep-
resent a buffer in which a loop condition is stored that is read by all tasks in the
corresponding mode. The size of these buffers affects the maximum amount of
tasks that can execute in parallel.

We use the high-level system simulator HAPI to verify the obtained analysis re-
sults. HAPI was initially a dataflow simulator [BPvMos], but was recently ex-
tended with the addition of processor sharing. This addition allows us to obtain
simulation results of task graphs, which can be used to falsify erroneous analysis
results [KHB16b]. No constraint violations were detected for the derived buffer
capacities as the source could fire strictly periodically. The traces generated with
the HAPI simulator are shown in Figure 4.10. In this figure, there is one trace for

Time | 4us 8us 12us

1 Y. il Y.
adc I 1) L) L)

Processorl [})
Pro 2 B —-oi: 3 6) {8
Processor3 (T IXXXJ7__[XXX)7__|XXX)
Processor4 L
detectieader | }—— (T)
decodeHeader))
validHeader —— (XX J0 J————fxx__ |1
fft {0) {1
denap o) OO T
deint {
convDecode
crc
16us 20us 24us 28us
Y. Y. Y. Y.
L) L) L) L)
.
) {6 —— e Ie) {6
:l@ {7 X X 0 X DB - 0 X 0 X P | {XXXYO[ExX)9XEX)9 {7 [XXX)7 XXX)7 XXX)}—
1 X I8 XX | {1 —y
2)
T)
r— —
) {) 3) e
7 XL)T ——— 5XX)2_JXxX)Z_} IRz ——
T o
[T R0 R0 f———JT T XX} [RXX)Z_[XX)Z_[XX)2_)
(XXX I0 X II | 2 I

[2a] Figure 4.10: Execution trace of the WLANp application from Figure 4.9 with
mutual exclusivity applied

each processor in which the currently running task and the iteration number of the
task is shown. In each trace pre-emptions based on either priorities or depletion of
budget are indicated by X’s. The trace in Figure 4.10 shows pipeline parallelism for
example at a time of 24 ps, at which the ff task already processes the next symbol
of the source whereas the CRC of a previous symbol is being computed by the crc
task.

Pipelining of the WLANp application would be impossible for certain assignments
of tasks to processors. The additional constraints in the application as a result of
barriers and locks can prevent pipeline parallelism inside a mode. In the example
the first task in the second mode (fft) is assigned to the same processor as tasks
in the first mode. The combined constraints of the buffer from the source to fft
and the lock and barrier, represented by the red dotted and orange dashed edge
in Figure 4.9, require fft to process a sample from the source within one period
when switching to the first mode. When for example task crc would be mapped
to that processor instead of task ff#, multiple tasks need to be finished within the
same period. In the dataflow model, the path without initial tokens from actor src,
via fft, demap, deint and convDecode to actor crc would than be a bottleneck and
limit pipelining since task crc would then release the lock. The barrier in the first
mode requires the lock to be acquired before the source in the same mode finished
its first execution. Therefore, it can be concluded that the amount of achievable
pipeline parallelism depends on the mapping of tasks to processors when an FPP

81

& SecTION 4.7 — CASE STUDY

ONITNATHOS Jd ANV STAOW 40 SISXTVNY TYNOILLISOdWO)) — ¥ ¥dLdVHD) /&

scheduler is used.

4.8 CONCLUSION

This chapter presents a compositional temporal dataflow analysis approach for
cyclic stream processing applications with modes executed on multiprocessor sys-
tems that use FPP scheduling.

The analysis approach is based on the ability to independently characterize the tem-
poral behavior of modes. This is ensured by adding locks in the application which
make the execution of tasks that belong to different modes but executed on the
same processor mutually exclusive. Furthermore, barriers are added such that to-
gether with the locks the interference of the tasks in a mode is independent of tasks
belonging to other modes. The additional constraints introduced by the barriers
and locks guarantee that composition of modes does not change their individual
characterization. As a result, applications containing a hierarchy of modes can be
described in an SVPDF model. This model can be analyzed by recursively apply-
ing existing dataflow analysis techniques, to determine the worst-case temporal
behavior. The SVPDF model and the parallel implementation including locks and
barriers are generated by a multiprocessor compiler.

Furthermore, it is shown that the approach allows for response times of tasks larger
than the period of the source. It is also shown that systems in which a combination
of budget schedulers and FPP schedulers are applied can be analyzed.

The applicability of the approach is demonstrated using a IEEE 802.11p receiver
application. We show that this application can be executed pipelined despite the
inserted locks and barriers. The analysis results are verified using a dataflow simu-
lator.

83

84

LATENCY ANALYSIS
USING TIMED AUTOMATA

ABSTRACT - Functional and temporal guarantees cannot always be given for
dataflow models supporting auto-concurrency. As a results of auto-concur-
rency and variations in firing durations, tokens can be produced, and more
problematic for functional correctness, consumed out-of-order. The Homoge-
neous Synchronous Dataflow with auto-concurrency (HSDF®) model does en-
sure functional correctness when tokens are produced out-of-order, but there
currently does not exist an exact end-to-end latency analysis technique for
these HSDF® models. Moreover, neither does there currently exist a dataflow
analysis approach for HSDF* models that accurately takes the effect of correla-
tion of firing durations of consecutive firings into account on the end-to-end
latency. In this chapter we therefore present a transformation of strongly con-
nected HSDF® models into timed automata models. This enables an exact
end-to-end latency analysis by performing model checking on these timed au-
tomata models.

Analysis of real-time systems can on the one hand be performed with timed-data-
flow models, as described in the previous chapters. The SVPDF model used there,
however, does not support auto-concurrency as it requires all actors to have an
implicit self-edge. Analysis techniques have been developed for dataflow models
to determine the guaranteed throughput and maximum latency [MBoy]. The be-
havior of some of these timed-dataflow models can be described using max-plus

This chapter is based on [GK:4].

VLVINOLNV A4NILL ONISA SISXTVNYV ADNHLVT — S J4LdVH)) E

algebra [dG*12]. Approximation techniques are often applied in order to reduce
the computational complexity of the throughput and latency analysis methods of
these models [H*16]. These approximation techniques make use of a deterministic
abstraction which reduces the accuracy.

Another approach is to model these real-time systems with timed automata. For
these type of systems a partitioning can be derived into a finite number of sets of
similar states. These sets are a result of restrictions to clocks with the same rate of
change, x = 1, and constant integer constraints on transitions. These finite number
of sets can be analyzed using a model checker like UppaaL [DILSo9] to compute the
exact maximum end-to-end latency. However, such an exhaustive analysis might
increase the run-time of the analysis significantly.

The HSDF* model, which we focus on in this chapter, is closely related to the HSDF
model. Like in the HSDF model, the actors in the HSDF? model produce one
token on each output queue and consume one token from each input queue per
firing. However, unlike the HSDF model, the dependencies between firings are
preserved despite that actors have a varying firing duration and are executed auto-
concurrently. In the HSDF? model tokens are consumed in index order instead of
timestamp order. Auto-concurrency can be used to model data parallel executions
of tasks [H*14]. As a result, the behavior of the HSDF? model can be described
with max-plus algebra, whereas this is not possible for the HSDF model with actors
that have varying firing durations. Furthermore, the correlation between the firing
durations of actor firings can be expressed. However, currently no exact end-to-end
latency analysis technique exists that takes this correlation into account.

In this chapter we present a transformation of strongly connected HSDF” models
into timed automata. We show that by transforming HSDF? models into timed
automata, we can compute the exact end-to-end latency using UppaAL. In the
case study we compare the latency for two HSDF? models computed using a timed
automata approach with the latency obtained using a state-of-the-art dataflow based
analysis technique that relies on a deterministic abstraction of the HSDF? model.
We also compare the run-times of these approaches.

This chapter is structured as follows. In Section 5.1 we discuss work related to latency
analysis techniques for dataflow models and the transformation of dataflow models
into timed automata. In Section 5.2, we introduce the HSDF* model and define
the latency analysis problem. In Section 5.3, we define the semantics of the HSDF*
model using max-plus algebra. In Section 5.4 we introduce the extended timed
automata model that is used in UppaAL. In Section 5.5 we show that under certain
conditions a timed automata model can be created that has the same behavior as an
HSDF? model. The case study is presented in Section 5.6. We state our conclusions
in Section s.7.

5.1 RELATED WORK

In this section we present work that is related to the modeling and analysis of data-
flow graphs. We first discuss the relation between some dataflow models and the
HSDF“ model. Then we discuss work related to the transformation of Time Petri
nets (TPNs), to which the HSDF* model is closely related, into timed automata.
Finally, we discuss related work on other end-to-end latency analysis techniques
for dataflow models.

The SDF model supports integer production and consumption rates and is a gen-
eralization of the HSDF model. The CSDF model [B* 95] has phases and is a gen-
eralization of the SDF model. Each phase can have a different consumption and
production rate and these phases fire in a fixed cyclic order. In the HSDF, SDF and
CSDF models, tokens can overtake each other as a result of auto-concurrency. In
the CSDF“ model [K*16], which is based on CSDF, an index is added to tokens
to take care that dependencies between firings are independent of the production
order of tokens. We consider the variant of the CSDF* model with one phase and
single rate and refer to it as HSDF?.

A transformation of TPNs into timed automata to determine the end-to-end latency
is presented in [GSoz2]. Both HSDF* graphs and Petri nets do allow reordering of
tokens, but a key difference is that Petri nets do not preserve dependencies between
iterations of data-dependent actors. As a result, the temporal behavior of HSDF*
graphs can be described with max-plus algebra, which does not hold in general
for Petri nets. Petri nets support auto-concurrency. However, we show that auto-
concurrency cannot be modeled in a timed automaton in general. The number of
simultaneously executions needs to be upper bounded. This contradicts the claim
made in [GSo2] that the transformation is always possible.

End-to-end latency analysis techniques for self-timed executed SDF graphs are
presented in [MBoy, G* 07]. The approach in [MBoy] does consider bursts of events.
However, the approach does not take into account that firing durations of actors can
be correlated. The approach in [G*o7] does not consider variations in execution
times, and the correlation between successive executions. This is also the case for
the timed automata based throughput analysis approach in [A*14]. Our approach
does allow the firing durations of actors to vary each firing and takes the correlation
between the firing durations of different firings into account. Our approach also
supports auto-concurrent execution of actors but requires the HSDF“ graphs to be
strongly connected.

5.2 THE HSDF? MODEL
In this section we first present the HSDF* model. Then we give a definition of the
maximum end-to-end latency for this model.

An HSDF* graph is a directed graph G = (V, E, §, p) that consists of a set of actors
V connected by a set of directed edges E. An actor v; € V communicates with

87

& SEcTION 5.1 - RELATED WORK

VLVINOLNV A4NILL ONISA SISXTVNYV ADNHLVT — S J4LdVH)) E

4
0 1
9) \3) \7] == aom \7

——0> Vy ——mm> —> Vx ——0—
A -) -

pe(i) 2. 4] pe(i) €2 4]

(a) In-order arrival of tokens. (b) Out-of-order production of tokens.

N

<o
Il
[O8]

index of firing (i)

0 1 2 3 4 5
time (1)

(c) Auto-concurrent firings with different fir-
ing durations.

2] Figure 5.1: Auto-concurrency and varying firing durations cause reordering of
tokens.

another actor v; by producing tokens on an edge e;; € E. Each edge represents
an unbounded buffer instead of a queue because tokens can be written into these
buffers in a different order than they are read. Initially there are J;; € Ny tokens on
an edge. An arrival of a token is an event which is represented by the tuple (9, i, 7)
consisting of a value 9, an index i, and a time-stamp 7 € Ry. An HSDF? actor v;
is enabled to fire its i-th iteration if there is at least one token with index i on all
its incoming edges. During self-timed execution of an HSDF“ graph, each actor
fires immediately after it is enabled. When an actor fires, one token is consumed
from each of its incoming edges and one token with index i is produced on each
outgoing edge of the actor. The tokens are produced exactly p,(i) € [px,px],
chosen non-deterministically, after the enabling of the actor. The firing duration
px(i) of the i-th firing of an actor v, can be defined more precisely using e.g. a
non-deterministic finite state-machine. Multiple firings of an actor overlap if there
are sufficient input tokens with the required indices. A token with index i +1 can be
produced by an actor before the token with index i is produced even if input token
i and i + 1 arrive at the same point in time. This is because firing i + 1 can have a
smaller firing duration than firing i. However, the consumption order of tokens is
determined by the indices and is therefore independent from the production order.

An example of reordering of tokens is shown in Figure 5.1. Two tokens arrive in-
order according to both their index and timestamp, since both are increasing, as
can be seen in Figure 5.1a. However, the combination of varying firing durations

px(i) G[Px)Px]
s(i) *{v\—» d(i)
-’

2] Figure 5.2: A basic HSDF* graph.

of v, and auto-concurrency can result in and out-of-order production of tokens,
as shown in Figure 5.1b. At timestamp 1, both tokens have been consumed and are
processed in parallel by v, as shown in Figure 5.1c. The first token experiences the
worst-case firing duration and the second one the best-case firing duration of v,.
As aresults, the token with a higher index is produced at an earlier timestamp than
the one with the lower index, and thereby the two tokens have been reordered.

We define the end-to-end latency of a HSDF* graph as L,y = max; (d(i) — s(i))
with s(i) the arrival moment of the token with index i in the input buffer, and d (i)
the production moment of the token with index i in the output buffer. Figure 5.2
shows a basic HSDF* example consisting of an actor, vy, for which Ly; = p,(i).
Overlapping firings can be prevented by adding a self-edge with one initial token to
an actor. In that case is Ly; only equal to the firing duration p, (i) if s(i) > d(i—-1).
However, given a burst of events at the input it can be the case that the next input
arrives before the previous output has been produced, i.e. s(i + 1) < d(i). Such a
burst increases the maximum end-to-end latency as a result of that tokens will stay
longer in the input buffer.

5.3 MAX-PLUS SEMANTICS OF HSDF?

In this section we use max-plus algebra to describe the evolution of actor firing
times during the self-timed execution of an HSDF® graph. The events that we
will relate in max-plus expressions are the completion of firings. These events are
related through precedence constraints, which are imposed by the channels in an
HSDF? graph: the times at which an actor may fire depends on the times at which
sufficient tokens become available on its incoming channels.

Max-plus algebra [B*92] only uses a max operator @ , and a plus operator ® . The
® operator has a higher precedence than the @ operator. The production events of
actors during self-timed execution can be described using these operators.

Describing a dataflow graph, i.e. HSDF, with max-plus algebra assumes the graph
to be functional deterministic, e.g. events remain in-order. The dataflow graphs
we consider make use of the combination of auto-concurrency and non-constant
firing durations of actors, which break this event ordering assumption. Functional
determinism is obtained for HSDF“ graphs by consuming tokens in index order,
even when the timestamps of tokens can be reordered. The production events of
HSDF? actor in max-plus therefore refer to the timestamp of the production of a
token with a specific index.

89

& SecTION 5.3 - MAX-PLUS SEMANTICS OF HSDF?

VLVINOLNV A4NILL ONISA SISXTVNYV ADNHLVT — S J4LdVH)) E

Px’Px

s1(i) ——dy(i)
e S R

(a) Dataflow actor with multiple in- (b) Dataflow edge containing § to-
puts and outputs. kens.

px(i) € [Pxpx] py(i) € [py--py]

(c) HSDF* graph containing a cycle of edges including & tokens.

2l Figure 5.3: HSDF* graphs used to explain latency derivation.

The following two cases need to be considered to be able to describe the production
moments in HSDF? graphs using max-plus:

1. Actors with multiple inputs and outputs and an iteration dependent firing
duration.

2. Edges with § > 0 initial tokens.

If an actor has multiple incoming edges, the edge on which the token with the
required index arrives latest determines the time at which the actor is enabled.
Tokens are produced on all outgoing edges of an actor after its firing duration. The
production moments of the actor in Figure 5.3a can therefore be described with the
following max-plus expression:

di(i) = da(i) = (s1(1) © 52(i) @ 53(1)) ® ps(i) (5)

Figure 5.3b depicts an edge containing ¢ initial tokens. The consuming actor can
consume § tokens before the first firing of the actor that produces tokens on the
edge. This can be described with Equation 5.2 in which ¢(i) is the earliest possible
consumption moment, and negative indices correspond with an arrival at time-
stamp 0.

c(i) =s(i-9) (5.2)

The maximum end-to-end latency for a dataflow graph can be described by combin-
ing expressions for actors and edges. Tokens on an edge represent dependencies of
the consuming actor on a firing with a lower index of the producing actor. Waiting
until an actor is enabled by all its inputs is enforced by the @ operator. The delay
caused by the firing duration is added in max-plus algebra using the ® operator. We

label: example
guard: x > 1
channel: start?
invariant: x < 3 update: y =t

(4] Figure 5.4: Extended timed automaton annotations.

can now derive L, for the cyclic HSDF? graph as shown in Figure 5.3¢ as follows:

a(i) = (s(i) @ b(i-9)) ® px(i) (5.3)
d(i)=b(i)= a(i) ® py(i) (5.4)
Ly = (s(i)® b(i-9)) ® px(i)® py(i) (5.5)

In these expressions a(i) and b(i) represent the moments at which the token with
index i is produced on e, and e, respectively.

Although max-plus algebra can be used to describe the constraints of an HSDF*
graph, only a constant (worst-case) firing duration is used for the actors. Using an
analysis approach that can capture variations in firing durations and correlations
between firing durations will lead to more tight analysis results. In the next section,
we will therefore model the constraints from a HSDF? graph in timed automata, and
extend them in Section 5.6 with correlations between firing durations to improve
analysis results.

5.4 EXTENDED TIMED AUTOMATA

In this section we present the extended timed automata model which is used in
UppaAL. Extended timed automata will be used in the next section to create mod-
els of HSDF? graphs. The timed automata model as described in Subsection 2.1.4,
is extended with finite data variables, urgent and committed locations and com-
munication channel. All of these extensions only affect the ease of modeling and
introduce structure in the model, but cannot introduce undecidability.

An extended timed automaton, as used in UPPAAL, is a directed graph A = (L, Act,

C,E,Inv,1°) where L is a set of locations, Act a finite set of actions, C a set of
clocks, £ € L x Act x B(C) x 2° x L is a set of edges, Inv : L — B(C) assigns an
invariant to each location and 1° is the initial location. The invariant of a location
expresses an upper bound ¢ € Ny on a clock ¢ € C. A location [€ L can be urgent,
meaning that no time is allowed to pass when an automaton is in /. When a loca-
tion is committed defines that an automaton must leave the location immediately.
Committed locations are used to create atomic sequences.

An edge in the automaton can have the following annotations as shown in Figure 5.4:
selects, guards, synchronizations and updates. A select non-deterministically

91

& SECTION 5.4 - EXTENDED TIMED AUTOMATA

VLVINOLNV A4NILL ONISA SISXTVNYV ADNHLVT — S J4LdVH)) E

chooses a value after a transition in a bounded range which can be used as vari-
able in the other annotations. A guard specifies when a transition over the edge is
allowed by means of a boolean expression or integer bounds on clocks. The synchro-
nizations annotation can used to define synchronization of transitions in different
automata. Finally, an update states integer expressions of which the outcomes are
assigned to variables after a transition on the edge is taken.

A system can be defined as a composition of extended timed automata. Synchro-
nization between these automata can be defined with channels or global variables.
A channel d has an emitting edge labeled d! and potentially has multiple receiv-
ing edges labeled d?. These receiving edges block until an event is received. Only
when a transition on both sides of the channel is enabled, a transition will occur
simultaneously across both edges. For an urgent channel the transitions cannot
be delayed and must occur immediately once it is enabled. A broadcast channel
can have multiple receiving edges simultaneously synchronizing to one emitting
edge. However, a transition across the emitting edge may occur without one of the
receiving edges being enabled. A transition over an edge can also update a global
variable. A transition over an edge in another automaton can be triggered when it
contains a guard function returning a boolean which depends on the value of that
global variable.

5.5 TIMED AUTOMATA MODEL OF HSDF% GRAPHS

In this section we describe the derivation of an extended timed automaton that is
semantically equivalent to an HSDF? graph. A complete HSDF? graph is composed
as a network of timed automata. First, timed automata are defined for the two
HSDF* subgraphs presented in Section 5.2. Using this, we describe the construction
of a behavioral equivalent network of timed automata of an HSDF? graph. Finally,
we discuss the consequence of that clock constraints of timed automata must be
integer values.

5.5.1 UPPAAL COMPONENTS

The max-plus equation in Equation 5.1 uses the & operator and describes a dataflow
actor with multiple inputs. Waiting until all inputs are available can be implemented
using a function empty() as a guard, which is used to check whether there are
sufficient input tokens. The corresponding timed automaton is shown in Figure 5.5a.
Taking the transition with the guard corresponds to the start of a firing of an actor.

Transitions in UPPAAL are not guaranteed to be taken immediately when enabled.
A transition without delay can be enforced on an edge using a synchronization
by making the channel urgent if there is already a channel. Otherwise, a dummy
broadcast channel should be added, see Figure 5.5b, of which the emitting side is
always enabled. The receiving side of the channel, see Figure 5.5¢, will always take
the transition immediately.

lempty() d!

a(i) — b(i)
(b) Location with urgent broadcast syn-
(a) Edge with a guard function empty (). chronization channel d.

X < Py
a(i) QL b a(i) = O RN

(c) Location with urgent broadcast syn- (d) Location with invariant and clock
chronization channel d. guard on outgoing edge.

a(i) @m bi)

(e) Edge with an update function produce().

2] Figure 5.5: Uppaal models

The addition of the firing duration of an actor can be incorporated in a timed au-
tomaton using a combination of an invariant and a guard, as shown in Figure 5.5d.
One location is added, which represents the firing of an actor. The transition to-
wards that location resets a clock x which indicates the start of a firing. The invari-
ant, x < Py, defines the upper bound time on how long it is possible to stay in the
location. The lower bound on how long it is at least required to stay in the location
is defined by the guard, x > p.

5.5.2 DATAFLOW EDGE MODEL

Fortunately, during its execution of a strongly connected HSDF? model, it is by
definition the case that the maximum number of tokens on a cycle can never in-
crease. The reason is that each actor on a cycle consumes one token from the cycle
each firing, but also produces one token on the cycle when it finishes the firing.
As a consequence, the number of tokens on an edge can never be larger than the
number of initial tokens on the cycle to which the edge belongs.

Global variables are used in UpPAAL to represent the tokens on the edges of a
strongly connected HSDF? model. An array of booleans is defined in UppAAL us-
ing these variables, where the size of the array is equal to the maximum number of
tokens that can accumulate on the edge. In a strongly connected dataflow graph,
the maximum tokens on an edge is always bounded by the number of initial to-
kens in the cycle(s) an edge is part of. The index is always incremented modulo
MAX_TOKENS, such that a fixed sized array can be used to store the indices of
tokens present on the edge. Additional information about the tokens on an HSDF*
edge, such as their value, can be stored in a similar array. Together these variables

93

& SECTION 5.5.2 - DATAFLOW EDGE MODEL

VLVINOLNV A4NILL ONISA SISXTVNYV ADNHLVT — S J4LdVH)) E

typedef int[1, NUM_ACTORS] actor_t;
typedef int[1, NUM_EDGES] edge_t;
typedef int[0, MAX_TOKENS-1] index_t;
typedef struct {
bool array[index_t];
actor_t from;
actor_t to;
} edge_t;
bool empty(edge_t &edge, index_t idx) {
return not edge.array[idx];

©N AV A W oN =

-
o v

}
void produce(edge_t &edge, index_t idx) {
edge.array[idx] = True;

(SRR
[S

}
void consume(edge_t &edge, index_t idx) {
edge.array[idx] = False;

Y
ERCIESN

}
void consume_actor(actor_t act, index_t idx} {

I
® N

19 for(e : edges_t){

20 if (edges[e].to == act) {

21 consume (edges[e], idx);}
22 }

23}

[aa] Figure 5.6: Uppaal queue and access functions declarations.

Empty pw? 1 P,\‘)'-? Full

Cxy? Cxy?

(4] Figure 5.7: Timed automaton of an initially empty edge ey, with a maximum
capacity of 2 tokens.

model edges, which can be manipulated using access functions, as shown in Fig-
ure 5.6. A token with index i is produced on edge using the produce(edge, i)
function, which is used as an update as shown in Figure 5.5e. This function sets
the boolean at the index in the array to True. A token is consumed using the
consume (edge, i) function, which sets the boolean at the index in the array to
False. The empty(edge, i) function returns the inverse of the content of the
array at the index i. The number of initial tokens on the edge determines the initial
state of the array.

For illustration purposes an automaton of an HSDF edge, for which it is guaranteed
that tokens arrive and are consumed in index order, is shown in Figure 5.7. Our
implementation of the model of a dataflow edge in UpPaAL uses global variables and
takes indices into account such that reordering is supported but cannot be depicted
intuitively. The number of locations in the automaton of an edge is equal to the
maximum tokens on the edge plus one additional location to indicate that there
are no tokens. The initial location in the automaton that models a dataflow edge

Waiting

lempty(index)
X2 pi dummy?
produce(index), x = 0, consume(index)
index=index+1%N
x < ﬁi
Executing

(a) Automaton modeling an actor v; that cannot fire auto-concurrently.
e=2

Y

: reli][e]?
! dx) &&)
e'g]lfstyy[(l]][;) me(idx[i][e]),| ¥ ¥ pi
fire[i][e]! il[e] = True | produce(idxi][e]),
idx[i] [e].:index, busy/[i][e] = False
index=index+1%N \

x < ﬁi
(b) Bounded auto-concurrency in UppAAL for actor v;.

<] Figure 5.8: Actor models in UpPAAL

is derived from the number of initial tokens on that edge. Urgent synchronization
channels are used to model the instantaneous production and consumption of
tokens.

5.5.3 ACTOR MODEL

A timed automaton for a dataflow actor can now be composed based on the max-
plus equations in Section 5.3. The template for an actor that does not fire auto-
concurrently is shown in Figure 5.8a. Two locations and one clock are used: one
to represent a state in which the actor is waiting until sufficient tokens with the
required index are present on all incoming edges, and one in which the actor is
executing. The waiting location is left immediately when all incoming edges con-
tain tokens, which is ensured by means of the guard function empty(..) and

95

& SecTION 5.5.3 - ACTOR MODEL

VLVINOLNV A4NILL ONISA SISXTVNYV ADNHLVT — S J4LdVH)) E

the urgent channel dummy. Tokens are removed from the input edges using the
consume(..) function. Internally, the consume(..) function calls the func-
tion consume_actor(..) function, as defined in Figure 5.6, which consumes to-
kens from all incoming edges of the actor. The same principle is applied for the
empty(..) and produce(. .) function to extend their use to multiple edges. In the
executing location the firing duration of the actor is modeled using a combination
of an invariant and guard. Finally, after the firing duration, a token is produced
on all corresponding outgoing dataflow edges using the function produce(..).
Moreover, the index is incremented modulo the maximum number of tokens on
the edges.

Auto-concurrency can only be modeled in UPPAAL in case an upper bound N on
the number of actor replications that can execute concurrently is known. In that
case, we replicate a modified version of the automaton in Figure 5.8a N times in
the UppaAL model. Fortunately, in strongly connected HSDF* graphs, there are
per definition never more tokens on a cycle than the number of initial tokens. As
a consequence, also the number of replicas of an actor that can fire concurrently
is never larger than the minimum number of initial tokens on the cycles to which
the actor belongs.

The replications of an actor are controlled by an additional master automaton, as
shown in the left part of Figure 5.8b. The master maintains the current index as
its state, such that tokens can be consumed in the order of this index. Using the
function empty(index) as a guard, the automaton determines if the actor is able
to fire. In case the actor is enabled, the combination of the select and an additional
guard, non-deterministically selects one of the replications of the actor that is not
currently busy. The selected replication e is fired using the urgent synchronization
channel corresponding to the actor i and replication e. The master also updates the
index variable idx[i][e] for the selected replication, such that it consumes and
produces tokens with the correct index. Mind that the update on the master, with
the emitting edge of the synchronization channel, is performed before the update
of a replication on the receiving edge. This allows the master to set the index of the
replication. The master finally increments its index modulo N, such that the index
variable always remains finite.

Each concurrent replication, as shown in the right part of Figure 5.8b, has a variable
to keep track of the index of the next token that it should consume and produce.
This index is set by the master when the replication of the actor fires. The functions
produce(..) and consume(..) make use this index, to produce and consume
tokens with the correct index. Another variable, busy[i][e], tracks if the replica-
tion is currently firing. This variable is set when an replication fires, and is cleared
when the firing is finished. The busy variable allows the master to start a new firing
on the replication when it is not executing.

— DPxy Cxy om
e
S— pyx ~

s ny
2] Figure 5.9: Cyclic HSDF* graph.

Empty Empty

Waiting ‘ Waiting

Executing Q Executing

] Figure 5.10: UppaAL model for HSDF* graph in Figure 5.9 with four automata,
two for the actors and two for the edges.

5.5.4 COMPLETE AUTOMATON OF AN HSDF* GrRAPH

A complete timed automaton can now be defined in UppaAL for an HSDF* graph
by instantiating components in the automaton for each element of the dataflow
graph. For each actor v; the actor template is instantiated. The edges e;; in the
dataflow graph are modeled using global variables and access functions. The au-
tomaton obtained given the HSDF? graph in Figure 5.9 is depicted in Figure 5.10.
For illustration purposes the dataflow edges are represented using automata that
do not consider token reordering.

To model a source, the timed automata model as described in [HV06] is used. This
source can generate bursts of events and is shown in Figure 5.11a. The source is
defined by its period P and maximum jitter /. The jitter J can be larger than P.
A similar automaton, as the one described in [HV06] to measure WCRT, is used
for measuring the end-to-end latency. We create a separate automaton instead of
including it in the source to measures the maximum time between two events as
is shown in Figure 5.11b. Also burst of events are supported by choosing one start
event from the channel start to track and storing an identifier in the variable n. The
clock r used to track the latency in the location Measuring until the corresponding
event occurs at the output by means of the channel finish. In the initial location,
the clock r is reset every time step to limit the state space.

97

& SecTION 5.5.4 - COMPLETE AUTOMATON OF AN HSDF? GRAPH

VLVINOLNV A4NILL ONISA SISXTVNYV ADNHLVT — S J4LdVH)) E

H——
start?
x==P() r=0 n++
pending++| pending++, x=0
r<=1
pending>o m==-1
pending——, m==0 start?
y==10) & s A B
x==P() produce() T Measuring
snd>o . finish?
pending++, x=0 o
snd——, y=o finish? ‘
pending>o n—— ‘
pending——, m!=0
snd++ start?
y==J() && snd>o0 produce() m=(m<02m:m—1),n——

snd——, y=o0
(b) UppAaAL model used to measure the
(a) UppaaL model of a bursty source, with pa- latency between events of two different

rameter a period and jitter channels

[«a) Figure 5.11: Miscellaneous UppAAL models

5.5.5 INTEGER CLOCK CONSTRAINTS

In the extended timed automata used in UppAAL all constraints in guards and
invariants related to clocks must be integer to be able to create a finite number
of similar states. Therefore, real-valued upper- and lower bounds on the firing
durations in a dataflow model cannot be represented in a timed automaton without
rounding. Increasing the worst-case firing duration and decreasing the best-case
firing duration in the automaton of the actors is allowed because it will increase the
set of behaviors that can be generated by the automaton that describes the complete
HSDEF* graph and therefore can only result in an increase of the computed worst-
case end-to-end latency.

5.6 CASE STUDY

In this section we compare latency analysis using an UpPAAL model with a state-of-
the-art dataflow based analysis technique. We consider dataflow models in which
each actor contains an internal non-deterministic finite state machine which de-
termines the maximum firing duration of the actor in each iteration. These firing
durations are not always equal to the worst-case firing durations of the actor and
therefore the workload of each actor varies. In [H*13a] an approach that captures

R . .
Vs e Py iy o
7™\ /—\”/ N\ x| N Y

Vs Oy ve | O [Vy [b4y | Vva)
Q - ///Y\._/«\ /N\.’/«\ - //N\.'/‘\, 4

)

(a) HSDF* model with p (i) and p, (i) determined by an internal state machine.

Vx
| I
fire[v]? L G px |
| I
fire[vy] __‘_ E
px(i)—1 | :
| I
| I
px(i) =1 T :
(b) Timed automaton of the internal state machine (c) Two parameter dataflow model of
of v« which determines its firing duration. Vi

[l Figure 5.12: HSDF* model used in the case study, internal state machine of the
actors, and deterministic two parameter workload model for HSDE* actor v,.

a varying workload in a deterministic dataflow model is described. This enables
the use of computationally efficient latency and throughput analysis techniques. In
this case study, we use the analysis method presented in [KHB16c] which makes
use of Linear Programs (LPs). Moreover, we also analyze the latency of a WLANp
receiver application.

The HSDF* graph that we first consider in this section is shown in Figure 5.12a and
consists of the actors v, and v, a source v, and a destination v4. The source is
characterized by its period P of 4 ms and jitter J € {0, 4, 8,16} ms, which allows for
bursts of tokens to arrive on e, The maximum number of tokens that can arrive
at the same time on e, follows from these parameters and equals | J/P| + 1. Both
actors have a firing duration which depends on the internal state of the actors. In
this example we consider actors with two internal states, which results in a firing
duration of 1ms in one state, and a firing duration of 2 ms in the other state. It is
possible to remain for a number of iterations in the first state, but the second state
is always switched to the first state immediately. It is therefore not possible to have
two consecutive firings with a firing duration of 2 ms. Such an automaton models
for example the sporadic execution of an additional code-segment inside a task.
We guarantee that there are sufficient initial tokens J,; and 4, such that v, and
v, are never delayed by the lack of tokens on e, or e;,. We want to analyze the
maximum latency L, from the source to the destination of this HSDF? graph.

A more accurate workload characterization can be created for actor v, than non-
deterministically selected firing durations in an interval, by making use of the

99

& SecTION 5.6 — CASE STUDY

100

VLVINOLNV A4NILL ONISA SISXTVNYV ADNHLVT — S J4LdVH)) E

BB Table 5.1: Latencies obtained using UpPAAL and using a deterministic HSDF*
model for two values of J .

Oyx =1 Oyx =2

P] run-time Ly Lig[H"13a] Ly Leg [H"13a] Ly
(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)

4 0 0.02 4 4 4 4 4

4 4 0.15 6 8 5 5.5 6

4 8 0.47 10 12 8 8 8

4 12 1.24 12 16 9 9.5 10

4 16 3.06 16 20 12 12 12

additional information about the state machine inside the actors that determines
the firing duration. Such a method is described in [H*13a], which requires that
two parameters are determined: a guaranteed throughput p and latency o. For
both actors v, and v, the minimum throughput is obtained when switching hap-
pens continuously between the two internal states. This results in a guaranteed
throughput of two tokens per 3 ms, therefore, p = 1.5ms. The parameter o in the
model describes the maximum latency and is equal to 2 ms. Using these two pa-
rameters, a more accurate dataflow model can be created for v, using two actors
vx,0 and v, 1 as shown in Figure 5.12c. One actor has a self-edge with a single token
and a firing duration equal to p,, whereas the other actor has a firing duration of
o0y — px. Together, these two actor represent the throughput and latency constraints
as described by the two parameters.

The additional information about internal states can also be incorporated in a timed
automaton. Figure 5.12b shows an automaton which determines p, (7). Every time
v fires the state is updated based on the urgent channel fire. This channel replaces
the channel dummy in the actor model of Figure 5.8a. The value of p, in the actor
model is made equal to the firing duration g, (i) as indicated by the internal state
machine. The value of p is set to o.

The computed latencies for different jitters are presented in Table 5.1. The results
obtained using timed automata are in the fourth and sixth column. The results
obtained using the two parameter dataflow model are in the fifth and seventh col-
umn. The table shows that more accurate results are obtained using timed automata
for §,x = 1, for a jitter of 4 and 12 ms and equal results for the other jitter values.
Adding an additional token on e, improves the result of the LP based dataflow
analysis method. All results were computed within 1 ms using this method. How-
ever, model-checking still results in more accurate analysis results. Furthermore, it
can be seen that the run-time of the model checker is rapidly increasing for larger
jitter values despite that this example considers a very small problem instance. The
negligible run-time and its better scaling of the LP based dataflow analysis method
makes it more suitable for larger graphs.

p [2 2] pts [4.-4] ps [1.3] us

i) N O
V4 N\ ’/ \/.\/ d()
[Vsre chest :reenc‘ [vit ——
) - TN T N

* i/ : :

\ ﬁlter —d % | % | ‘ dem .04 |deint
p / \\ // \\ // \\ -) —_—g
[1..3] us [4..6] ys [2..2] ys [1.5] ps [1..4] ps

[ia] Figure 5.13: Dataflow graph of a WLAN 8o2.11p transceiver application. All
actors have an implicit self-edge with a single token.

The last column of Table 5.1 contains the results obtained for the case that the
internal state machine of the actor v, is ignored and non-deterministically selected
firing durations in the interval [p, .] are used instead. These results are the most
pessimistic ones and are the same for both analysis methods.

An HSDF? model of a WLAN 802.11p application is presented in [KHB16¢]. Fig-
ure 5.13 shows this HSDF* model which consists of a source with a period of 10 ps,
8 actors and 19 edges connecting them. The number of initial tokens, J;... §, are all
set to 3. An automaton per actor, like the one in Figure 5.12b, determines their firing
durations. UPPAAL is used to calculate L; which is equal to 21 us and is computed
in 435 s. A latency of 23 ps was obtained with the LP based dataflow analysis method
within 1 ms. The run-time of UpPAAL can be reduced at the cost of accuracy by re-
moving some of the automata and instead using actors with non-deterministically
selected firing durations from their interval. Replacement is allowed because it
results in that more behaviors are considered during analysis. The run-time is 3 s
and latency 23 s in case all actors are replaced.

5.7 CONCLUSION

In this chapter we presented a behavior-preserving transformation of strongly con-
nected HSDF? graphs into timed automata. These timed automata allow for the
computation of exact end-to-end latencies because the correlation between the
firing durations of different firings is taken into account.

The transformation of HSDF? graphs into a behaviorally-equivalent timed automa-
tais possible because the number of tokens on edges in a strongly connected HSDF*
model is bounded. Therefore, buffers can be modeled using the extended timed
automata of UppaAL which by definition have a finite number of states. This also
guarantees that there is a maximum number of replicas of the same actor that can
fire concurrently. This guarantees that there is a finite number of concurrent state

101

& SectiON 5.7 - CONCLUSION

102

VLVINOLNV A4NILL ONISA SISXTVNYV ADNHLVT — S J4LdVH)) E

machines, and thus states, required to model each HSDF* actor.

In the case study we consider two HSDF? examples for which exact end-to-end
latency analysis results are obtained using timed automata and UPPAAL, whereas
this is not possible using deterministic timed-dataflow models. This comes at the
cost of a higher run-time which for the considered examples is less than 435s.

103

104

HYBRID LATENCY ANALYSIS

ABSTRACT — Current latency analysis approaches for real-time multiproces-
sor applications often have a low accuracy or high computational complexity.
Several approximative analysis approaches exist that can analyze the latency
efficiently. However, these approaches often produce too pessimistic latency
results and do not exploit buffer sizing nor exploit additional sequence con-
straints to reduce the latency. More accurate latency analysis results can be
obtained using model checking of timed automata, however, potentially at the
cost of an excessive run-time. This chapter presents a latency analysis approach
for cyclic task graphs that combines model checking and timed-dataflow an-
alysis. The approach is applicable for systems in which tasks are executed on
shared processors using an FPP scheduling policy. The reduction in run-time is
achieved by pruning the search space that needs to be analyzed using the model
checker by making use of approximative dataflow analysis techniques. The ap-
proach exploits dimensioning of buffers to minimize interference and latency.
Moreover, sequence constraints are introduced and automatically adapted in
order to minimize the latency.

6.1 INTRODUCTION

Cyclic dependencies in real-time multiprocessor applications complicate the an-
alysis of these applications, especially when FPP scheduling is involved. However,
these dependencies can also have beneficial effects on latency. These cyclic depen-
dencies can for example be a result of: feedback loops, a static task execution order,
clustering of tasks [FKH™ 08] or bounded size FIFO buffers [WGHB15]. As a result

This chapter is based on [GK:5].

106

SISXTVNV AONALVT dI¥dAH — 9 ¥4.LdVH)) E

of these cyclic dependencies, tasks on these cycles can only interfere a bounded
number of times with each other. In [LMB"14], these dependencies are used to
calculate upper bounds on the interference of tasks sharing the same resource. The
maximum number of times tasks can interfere with each other can for example be
controlled by the size of the buffer between tasks [WGHB15]. Lower interference
between tasks can have a positive effect on the maximum latency. But, as we show
in Section 6.7, minimal buffer sizes given a throughput constraint imposed by a
periodic source, do not always result in the minimal latency.

Buffer sizing cannot be used to control the interference between tasks if these tasks
do not communicate. Moreover, sizing of buffers cannot delay the start of a con-
suming task. To provide more control over the schedule freedom we introduce
sequence constraints with initial tokens between tasks. The interference between
tasks, and as a result the maximum latency of the task graph, can be reduced by
carefully controlling the number of initial tokens. We will show that in some cases
a negative number of initial tokens is required for achieving the minimum latency.
The number of initial tokens on sequence edges can be derived with a similar algo-
rithm as is used for buffer sizing.

Several approximative analysis approaches exist that can calculate the latency for
real-time multiprocessor applications, including the effects of FPP scheduling.
However, well known approaches like MAST [HGGMoz1] and SymTA/S [HHJ " o5]
are not able to analyze arbitrary cyclic dependencies. Therefore, these approaches
are not able to optimize the latency by exploiting cyclic dependencies. The iterative
dataflow analysis approach in [KHB16¢] is able to handle arbitrary cyclic dependen-
cies and uses a buffer sizing technique, which can result in a latency reduction. This
approach does not consider all possible buffer sizes, since otherwise monotonicity
and convergence of the used analysis flow cannot be guaranteed.

Dataflow analysis techniques have shown to be suitable for the analysis of cyclic
applications. Processor sharing, however, cannot be modeled explicitly and can
only be included by deriving an over-approximation bound on the interference
of tasks. There are techniques to prevent interference between tasks that produce
more accurate analysis results by making tasks mutually exclusive as discussed in
Chapter 4. However, making tasks mutually exclusive does not always result in the
minimum latency. As shown in Chapter 5, exact latency analysis for dataflow graphs
without pre-emptive scheduling is possible using timed automata if the execution
times are natural numbers.

Timed automata are a popular formalism for modeling and analyzing real-time
systems. Although latency analysis is possible, there is no computationally efficient
build-in support for optimizing of costs like, buffer sizes, or the introduction of
additional sequence constraints, to reduce latency. The problem of finding the
minimum latency in case of cyclic dependencies is non-monotonic. Therefore all
configurations of buffer sizes have to be analyzed. Moreover, without a combination
of timed automata and an approximate analysis technique to upper bound and
reduce the number of configurations, many of these configurations need to be

analyzed leading to a high run-time.

This chapter presents a latency minimization approach with a reduced run-time
for cyclic task graphs executed on shared multiprocessor systems using FPP task
scheduling. The approach identifies the configuration of buffer capacities and se-
quence constraints that result in the minimum latency. The approach uses ap-
proximative, but computationally efficient, timed-dataflow analysis techniques for
removing all configurations from the search space that cannot result in the lowest
latency since these will deadlock, won't reach the throughput of the periodic source,
or impose redundant constraints. To find the configuration with the lowest latency
the remaining options are evaluated using a model checking approach.

This chapter is structured as follows. In Section 6.2, we discuss related latency an-
alysis approaches for task graphs using FPP scheduling. The basic idea behind our
hybrid analysis approach is presented in Section 6.3. In Section 6.4, extended timed
automata are used to create a model of task graphs. Model checking is performed
on these models to analyze latency. The dataflow model is introduced in Section 6.5,
which is used in analysis techniques that reduce the number of configurations that
need to be analyzed. Both these timed automata and dataflow-based analysis tech-
niques are combined in our analysis flow as described in Section 6.6. In Section 6.7,
we introduce sequence constraints to reduce latency. The case study is presented
in Section 6.8. We state our conclusions in Section 6.9.

6.2 RELATED WORK

In this section we present work related to latency analysis of task graphs where
tasks are scheduled using FPP scheduling. We first discuss related approximative
analysis approaches, which do not perform buffer sizing to reduce latency. Then
we discuss both analysis approaches that use timed automata, and decidability of
scheduling problems using timed automata. Finally, we discuss an approach that
does perform buffer sizing.

The SymTA/S approach [HHJ " o05], is one of the techniques which overestimates
interference between tasks in order to analyze latency. The approach, however, is
not able to handle arbitrary cyclic dependencies. MAST [HGGMoi1] is another
approach that can derive a more accurate characterization of the interference. It
is limited to the analysis of acyclic graphs. The MPA-RTC [TCG™ o1] analysis ap-
proach has been extended to support either cyclic data dependencies [TSo9], or
cyclic resource dependencies [JPTYo08]. The combination of cyclic resource and
data dependencies is not supported. Neither of these approaches use buffer siz-
ing techniques to reduce latency, nor introduce additional sequence constraints to
reduce latency.

Timed automata based analysis approaches can be used to determine the latency
of a task graph. A number of these approaches only considers a fixed (worst-case)
execution time of tasks [HVo6, MLR*10, PWT" 07]. This ignores additional inter-
ference between tasks that can occur when tasks finish earlier. The TIMES-tool

107

& SecTION 6.2 — RELATED WORK

108

SISXTVNV AONALVT dI¥dAH — 9 ¥4.LdVH)) E

[AFM* 03, FMPYo06] does consider BCETs and WCETs. We use their method of
summing up the time needed to finish all released tasks to determine when a task
finishes its own execution, which is described in more detail in Section 6.4. How-
ever, TIMES only considers the single processor case. The multiprocessor case is
considered in [DILSog9, BHMo8], but these approaches are limited to acyclic task
graphs. Moreover, none of these timed automata based approaches exploit buffer
sizing of blocking buffers to reduce latency.

Decidability of scheduling problems using timed automata is discussed in [KYo4].
This paper shows that the problem of deciding whether the deadlines are met of
tasks in a task graph that is scheduled using fixed priority scheduling on a single
processor, is in general undecidable. Therefore also the exact latency of an arbitrary
task graph on shared resources can not be computed. More precisely the problem
to verify whether the tasks meet their deadlines is undecidable if the following three
conditions hold:

1. The execution times of the tasks are characterized by an upper and lower
bound on a continuous time interval.

2. Tasks can announce their completion time to other tasks at every point in
continuous time.

3. Each task can preempt another task at any point in time, i.e. not only at clock
cycle boundaries.

The problem is not a decision problem anymore if the result of the analysis can be be-
sides the yes/no answer also the answer that may-be the tasks meet their deadlines.
Over-approximation during analysis introduces this third option and this is what
has been used in TIMES [AFM™ 03, FMPYo06] and is also used in this chapter. The
approach in [DILSog] makes use of stopwatch automata which are in general un-
decidable. In UppaAL 4.1 techniques are introduced that apply over-approximation
during analysis in case stopwatches are applied in the timed automata model. This
over-approximation has as a positive side-effect that the run-time is reduced. In
this chapter we also introduce a timed automata model in which stopwatches are
used. This enables a comparison with the case that a timed automata model without
stopwatches is used. In [MDAog] it is not assumed that tasks can finish at every
point in time. This makes the schedulability of the decision problem decidable but
results in an impractically large automata model if it is considered that tasks can
be preempted at every clock cycle boundary.

The approach in [KHB16¢] minimizes buffer sizes given a throughput constraint.
However, it does not minimize the latency at the same time. We do make use of
this approach in our hybrid analysis flow to find safe bounds on buffer capacities,
by analyzing the buffers as non-blocking buffers. This approach over-approximates
interference. Moreover, a small generalization had to be made to be able to compute
the number of initial tokens on sequence constraints since sequence constraints
are a more general version of blocking buffers.

[2a] Figure 6.1: One-to-one relation between a task graph containing a blocking
buffer and a dataflow graph.

6.3 BAsIC IDEA

The idea behind our analysis approach is presented in this section. We start by
showing the relation between a task graph containing a blocking buffer and a data-
flow model of it, where cyclic dependencies are present. Then, we show how these
cyclic dependencies can influence interference between tasks. Finally, we indicate
how we can minimize latency using these cyclic dependencies.

The dependencies in a task graph have a one-to-one relation with the edges in a
dataflow graph. This is illustrated in Figure 6.1, where two tasks, 7; and 7 j» commu-
nicate using a blocking buffer. Initially this buffer contains one full container §;;
and two empty containers J ;. A task can only execute and write to such a buffer
after it first obtained an empty container. After its execution, it produces a full
container, which can be read by the consuming task. In the dataflow graph, the
initially full containers of the buffer are represented as tokens on the edge from
actor v; to v, which correspond to the tasks, whereas the tokens on the edge from
vj to v; represent empty containers.

Scheduling freedom is affected by these cyclic dependencies that model blocking
buffers. Based on these cyclic dependencies we can derive an upper bound on the
number of times tasks can be pre-empted using the FPP scheduling policy. The
number of times 7; can be pre-empted by 7; is therefore bound by §;; + §;;. There-
fore we can conclude that interference between tasks can be controlled by choosing
the number of containers in the buffer, e.g. by using buffer sizing techniques.

The relation between buffer sizes and latency for a graph is non-monotonic
[WGHBA15]. Therefore, in order to obtain the minimum latency for a task graph,
we have to verify latency for all possible buffer sizes of all buffer, which we call
configurations in this chapter. In order to obtain latency results for this unstruc-
tured analysis problem, model checking is performed. An upper bound on the
size of each buffer can be calculated using approximative analysis techniques. The
upper bound represents the situation where the schedule of tasks is not influenced
by the size of buffers because there are always sufficient empty containers. As a

109

& SectiON 6.3 — BASIC IDEA

SISXTVNV AONALVT dI¥dAH — 9 ¥4.LdVH)) E

result the write of a buffer will never be blocked and thus delayed because there is
always space in the buffer. The lower bound on the buffer size is determined by the
number of full containers. In case the buffer size is equal to one, a fixed execution
order of the tasks is enforced. Such an order is called a static-order schedule. Timed
automata of the task graph are generated for all possible buffer sizes between these
computed lower and upper bounds. These timed automata are then analyzed using
UppAAL to find a configuration with the minimum latency.

6.4 TIMED AUTOMATA

A template-based timed automata model is constructed in this section to allow dif-
ferent configurations of a task graph to be verified automatically using UppaAL. We
use the extended timed automata model which is already introduced in Section 5.4.
Using these extended timed automata, we define parameterized templates for the
different components in a tasks graph’. The maximum latency of a task graph is
then verified using UpPAAL for a network of timed automaton instances.

Based on these extended timed automata we will now define a template for tasks,
schedulers, and FIFO buffers. Given these templates, a network of timed automata
is created for a specific configuration of a task graph where the buffer sizes are con-
figured and a number of tasks and processors are instantiated. Each configuration
will therefore result in a unique network of timed automata.

6.4.1 FIFO BUFFER

A FIFO buffer is modeled in extended timed automata using global variables and
access functions to manipulate and check these variables, as described in Subsec-
tion 5.5.2. Each buffer is represented by two edges, each containing the producer
task, consumer task, and a number of tokens on the edge. The number of tokens
is initialized with the number of full or empty containers in a buffer. The func-
tion empty() is used to check if there are insufficient tokens, e.g. < 1. Tokens are
produced using produce (), which increments the number of tokens by one. The
number of tokens is decremented by one using consume ().

6.4.2 TASK TEMPLATE

The timed automaton of a task consists of three locations as shown in Figure 6.2a.
The transition from the initial location, Idle, is guarded by the expression which
checks if there are sufficient tokens on all its incoming edges. The urgent broadcast
channel req is used to signal the processor that the task is ready to execute and
tokens are consumed from all incoming edges using consume(). In the second
location, time passes until execution on the processor is granted using the urgent
broadcast channel grant on a specific processor, CPU, to which the task is statically
assigned. During the transition to the 3" location, the clock x is reset. This clock

! Available at https://github.com/gkuiper/Uppaal WLAN

https://github.com/gkuiper/UppaalWLAN

Idle rel[CPU][t]?

n__
source?
n++

lempty() r=0
req[CPU][id]! re=1
consume() m==0 m==—1
‘ x> Big m=-1, 0 source?
rel[CPU][id]! n=—,r= r=0.m=n.n++
produce() rel[CPU[)? Measuring
grant[id]?
x=0 rel[CPU][t]?
n_—
m!=0
source?
x < Wig m=(m<0?m:m-1),n——
(a) Timed automaton template (b) Timed automaton used to measure latency between
for a task id. the source and sink t.
Idle
t:task_t
req[CPU][t]?
enq(t), x=t empty()
pr(new)> pr(x) lempty
X=new x=front()

t:task_t
req[CPU][t]? |grant[CPU][x]!
enq(t), new=t

rel[CPU][x]?
Executing deq(x)

pr(new)< pr(x)

(c) Timed automaton template for a processor CPU using FPP scheduling.

[sa] Figure 6.2: Timed automata templates for different components in a task graph.

represents the execution time of the task. This location can be left when the clock
is between B;; and W;; which are equal to the BCET and WCET. During the

111

& SECTION 6.4.2 — TASK TEMPLATE

112

SISXTVNV AONALVT dI¥dAH — 9 ¥4.LdVH)) E

transition to location Idle tokens are produced and the processor is signaled about
the completion of the task using the broadcast channel rel.

Two options are implemented to incorporate the inference caused by pre-emptions
of tasks with a higher priority. One option uses over-approximations of the finish
times to guarantee decidability of the scheduling problem, the other option uses
stopwatches.

Over-approximating pre-emptions

Pre-emptions can be over-approximated by deriving a lower and upper bound on
the completion time of higher priority tasks. For each pre-emption the bounds
of lower priority tasks, B;; and W;,; in Figure 6.2a, are incremented respectively
with the BCET and WCET of the task which triggered the pre-emption. This over-
approximation on the finish time of the task enforcing the pre-emption ensures
decidability.

Stopwatches

Using stopwatches, a more intuitive task template can be constructed in which
the clock tracking the execution time is paused when a task is pre-empted. The
processor must set a global variable runs[CPU] to indicate which task is currently
executing on a processor. The invariant of the 3™ location in Figure 6.2a must be
extended to also set the derivative of clock x to either o or 1 depending on the tasks
that is executing, e.g. x” == (runs[CPU]==id). The clock is stopped if x* == 0.
The global variable runs[CPU] is set to the id of the task that is granted access to
the processor and is reset when the task releases the processor.

6.4.3 PROCESSOR TEMPLATE

A processor template for the FPP scheduling policy is constructed using a task
queue. This queue contains all tasks that have issued a request to indicate they are
ready to execute. For FPP scheduling, the queue is sorted based on the priority
of the tasks. The timed automaton consists of two locations where time can pass,
Idle and Executing, and three committed locations used to create atomic sequences
where time cannot advance. This timed automaton is shown in Figure 6.2c. From
the Idle and Executing location, a transition occurs when a task issues a request via
the req channel. In that case, the new task is enqueued, enq(t). When the transition
is taken from Idle the queue was empty and the task is immediately granted access
to the processor using the channel grant. Otherwise, the priority of the currently
executing task and the new task are compared. Based on the outcome, the current
task can resume execution or is pre-empted and the new task is granted access to
the processor. After a task finished its execution, the processor receives a signal on
the rel channel and as a result, removes that task from the queue. The task in the
front of the queue with the highest priority is then granted access, or the processor
idles if the queue is empty.

6.4.4 VERIFICATION

The latency in a network of timed automata is measured using a separate timed
automaton. The automaton as shown in Figure 6.2b measures the latency between
an event produced by the source from channel source and the release event of the
task producing the output for the sink, using the channel rel. The source, which
produces events, is characterized by a period and jitter. Since multiple source events
can be produced before a release event is produced that is a result of the first source
event, a non-deterministic selection is made of an event that is tracked. This non-
deterministic selection results in that UpPaAL will check all source events. Variable
n tracks the number of outstanding events from the source and is incremented for
each event from the source. This variable is copied to variable m when a source
event has occurred and the transition to the location Measuring is made. Variable
m tracks the number of remaining release events before the event corresponding
to the source event is found. Release events belonging to previous source events
are skipped and decrement m. Only when both m == 0 and a release event occurs,
the matching release event is found such that the latency measurement is stopped
by returning to the initial location. In the initial location, the clock r is reset every
time unit since no measurement is taking place to reduce the state space. This is
implemented using the invariantr <= 1 and the edge with the updater = 0. The
maximum latency can then be obtained by querying the suprema of clock in the
location Measuring: sup{Measuring}: r.

6.5 TIMED-DATAFLOW

Computationally efficient approximative analysis of task graphs can be performed
using timed-dataflow analysis techniques. Based on the HSDF dataflow model, as
described in Section 2.2, we derive techniques in this section to prune the number
of configurations that need to be analyzed in our approach using timed automata.
Finally, we describe dataflow-based approximative analysis method that we use to
derive upper bounds on buffer capacities.

The dependencies of a task graph can directly be translated into an HSDF graph as
discussed in Section 6.3. However, the effect of FPP scheduling cannot be modeled
directly in HSDF graphs because HSDF graphs do not allow modeling of choice.
Therefore, bounds on the response times of tasks are used as firing durations of the
corresponding actor. As a consequence accurate analysis latency results cannot be
obtained directly but these approximations can be used to prune the number of
configurations that need to be analyzed using UppAAL.

6.51 DEADLOCK

By definition, a HSDF graph deadlocks if it contains a simple cycle without initial
tokens. We can therefore prune, i.e. discard, all configurations with simple cycles
without initial tokens. This is especially useful after introducing additional con-

113

& SECTION 6.4.4 — VERIFICATION

114

SISXTVNV AONALVT dI¥dAH — 9 ¥4.LdVH)) E

A

[1 Compute initial execution interval

2 Bound interference based on execu-
tion intervals & precedence constrains

¥

3 Extend execution interval
considering interference

¥

[4 Determine estimates on buffer capacities

¥

Constraints violation Convergence

[2a] Figure 6.3: Analysis flow of the approximative dataflow analysis approach.

straints as presented in Section 6.7. UPPAAL can also verify the absence of deadlock,
however, less computationally efficient.

6.5.2 MINIMUM GUARANTEED THROUGHPUT

Another method to prune the number of configurations is by considering the
throughput constraint imposed by the source. The guaranteed throughput of HSDF
graph must be greater than the throughput of the source to prevent the source from
blocking as a result of a full buffer. We cannot determine the throughput of a data-
flow graph accurately when FPP scheduling is involved. However, a lower bound
on the guaranteed throughput can be determined by setting the firing duration
of all actors to the WCET of the corresponding tasks, ignoring any interference.
A computationally efficient MCR algorithm [Rei68] can then be used to calculate
the MCR, which corresponds to the inverse of the minimum guaranteed through-
put. All configurations where the minimum guaranteed throughput is less than the
period of the source are discarded.

6.5.3 APPROXIMATIVE DATAFLOW ANALYSIS

The approximative dataflow analysis method we use is based on execution intervals
of tasks [KHB16c¢]. The execution interval Z; consists of the earliest possible start
time and the latest possible finish time of a task 7;. These intervals are determined
from a best-case dataflow model using BCETs, and a worst-case dataflow model
using WCETs and upper bounds on task interference.

The analysis flow of this approximative dataflow approach is shown in Figure 6.3.
Initially, the execution intervals are determined without considering interference
as shown in step 1 of the flow. Initial buffer sizes are chosen such that the graph
is deadlock-free. In step 2, an upper bound on the possible interference between
tasks is calculated given the execution intervals. The precedence constraints origi-
nating from the buffers in a task graph are included in this interference calculation.
The execution intervals are extended in step 3 using the calculated interference.
Buffer sizes for iteration k € N are calculated based on the latest finish time of the
consuming task 7;, 7 > and earliest start of the producing task 7;, T

T.— T,
k _ jT 4 k-1
8ji—max([b],6]»1-) (6.1)

J

where 8% is the number of initial tokens on e;; in iteration k and P; is the period
of the consuming task. The buffer sizes are not allowed to decrease compared to
the previous iteration in order to guarantee termination of the analysis flow. Step
2 to 4 form an iteration of the analysis flow, which is repeated until a constraint
violation occurs or the execution intervals and buffer sizes have converged, i.e. stay
the same.

Since buffer capacities are determined in every iteration of this analysis flow, we
refer to this method as iterative buffer sizing. Note that we cannot guarantee that
the configuration of buffer sizes leading to the minimal latency of a task graph is
considered using iterative buffer sizing.

The analysis flow can also analyze buffers without blocking write, i.e. non-blocking
buffers. In that case, the buffer sizes are calculated such that there always is at least
one empty container available for a task that is enabled, to prevent buffer over-
flows. While iteratively computing blocking buffer capacities is a means to limit
interference in the analyzed application, iteratively computing non-blocking buffer
capacities is merely another way to model maximum interference, without influ-
encing the analyzed application. Representing blocking buffers as non-blocking
consequently allows derivation of an upper bound on their capacity, which there-
after can be used to limit the number of states in UpPAAL.

6.6 HYBRID ANALYSIS

Our hybrid analysis approach, which combines analysis techniques from timed-
dataflow and timed automata, will be described in this section. The hybrid analysis
flow is shown in Figure 6.4, which will be described step-by-step. The flow uses a
task graph as an input containing buffers, tasks, and a task to processor assignment.

In the first step, a lower and upper bound is derived on the capacity of all buffers.
The upper bound is calculated using the approximative analysis technique as de-
scribed in Section 6.5. This upper bound is determined by analyzing each buffer
as non-blocking. The lower bound is set to the maximum of 1, which prevents
deadlock, and the number of initially full containers in the buffer.

115

& SecTION 6.6 — HYBRID ANALYSIS

116

SISXTVNV AONALVT dI¥dAH — 9 ¥4.LdVH)) E

Y

[1 Derive bounds on buffer capacities

¥

)
[2 Generate configurations from the bounds]
)

L2 20 2 20 2 2 2 2 2 A

(3 Prune configurations using dataflow analysis

¥ v ¥

4 Generate timed automata for each
configuration & verify latency

¥

-] Figure 6.4: Hybrid analysis flow.

Once these bounds are determined, configurations of the task graph are generated
in step 2. Since the latency is non-monotonic in the buffer capacities, we have
to consider all possible sizes of each buffer within these bounds. The set of con-
figurations therefore consists of the product of the number of buffer sizes of all
buffers.

Many configurations are generated for which we can guarantee, using dataflow
analysis techniques, that these will not result in the minimal latency. Step 3 per-
forms pruning of the configurations using the deadlock and minimum guaranteed
throughput techniques described in Section 6.5.

In the final step, a network of timed automata is created for each remaining config-
uration. As described in Section 6.4, a timed automaton template is initiated for all
buffers, tasks and processors. The sizes of the buffers are fixed as specified in the
configuration. The model checker UpPAAL is used to verify the maximum latency
of the network of timed automata. Once all configurations are verified, the one
resulting in the minimum latency is selected to finish the analysis.

In the next section we discuss the introduction of additional sequence constraints.
The same hybrid analysis flow can be used for these constraints, since these con-
straints can be seen as a generalization of the constraints imposed by buffers.

6.7 SEQUENCE CONSTRAINTS

In this section we present a method that potentially reduces latency by introducing
additional sequence constraints. We introduce pairs of these sequence constraints
as cyclic dependencies between two tasks to have direct control over the maximum
interference one of these tasks can cause on the other. This construct of sequence
constraints can be seen as a generalization of a blocking buffer, with as important
difference that it does not store data.

2] Figure 6.5: Dataflow graph where sequence constraints are inserted between v 4
and vp.

In general, buffers only allow their capacity to be changed in case it does not result
in a change of the functional behavior of an application. The number of initially full
containers in a buffer is fixed and therefore there is only control over the number of
initially empty containers. As a result, changing the buffer capacity will only change
the temporal behavior of an application and not the functional behavior (unless
it deadlocks). The sequence constraints can be seen as a generalized buffer, it not
only allows control over the number of initially empty, but also over the number of
initially full containers. Adding these sequence constraints does not influence the
functional behavior of an application because it only affects the schedule freedom
and does not result in transfer of data.

Formally, a sequence constraint between 74 and 75 contains a number of containers
0aB o O1 the forward edge e 45, and a number of containers 8 45,, on the backward
edge epa. Letsa (i) be start of the i’th (i € N) execution of 74, f4 (i) the finish of the
i’th execution of 74 and logically f4 (i) > s4(i). The sequence constraints introduce
the following constraints: sp(i) >= fa(i — 0ap,,) and sa(i) >= fp(i — dap,,)-
Notice that a deadlock will occur when 5ABfW +048,, <0.Incase SABfW +0a8,, =1,
only one execution order is enforced between 74 and 75, which therefore is a static
execution order.

A one-to-one translation is possible from a sequence constraint to a corresponding
dataflow model. The forward and backward containers of a sequence constraint
are equivalent to initial tokens on the corresponding edge. An example of a data-
flow model containing sequence constraints is shown in Figure 6.6a. The example
consists of four tasks; 74, 75, Tx and Ty. 74 and 75 share a processor and sequence
constraints are therefore inserted between 74 and 7. These tasks are converted to
actors in the dataflow model. The edges corresponding to the sequence constraints
are shown as dashed lines in the graph.

Since the sequence constraints can directly be expressed in a dataflow model, ex-
isting analysis techniques can be applied to it that determine the required number
of tokens given a throughput constraint. The difference with buffer sizing for the
number of empty containers is that, for each sequence constraint, the number of
containers on two edges can freely be chosen. The approximative timed-dataflow
approach in [KHB16c] is therefore extended to derive an upper bound on the num-
ber of initial tokens on both the forward as the backward edge using the existing
buffer sizing algorithm. The hybrid analysis, as presented in Section 6.6, is therefore
also applicable for graphs containing sequence constraints.

117

& SECTION 6.7 - SEQUENCE CONSTRAINTS

118

SISATVNYV ADNALVT AIYIAH — 9 ¥dLdVH)D) E

P=2T 05T T o.5T

T

(a) Dataflow graph where a static execution order of v4 and vp increases the end-to-end
latency.

2
time (T)

(c) Schedule of Figure 6.6a for which 8, = 1,84, = 0

time (T)

(d) Schedule of Figure 6.6a for which &y, = 1, 4, = 1.

[2a) Figure 6.6: Example where a static execution order of v4 and vy increases the
end-to-end latency.

We will use the examples in Figure 6.6a to illustrate that enforcing a static execu-
tion order between 74 and 75 by using sequence constraints will lead to a higher
latency than when 7, (with a high priority) can pre-empt 7 (low priority). A static
order schedule between these tasks can be created where 74 must execute before
7 by selecting SABM =0,048,, = 1as shown in the schedule in Figure 6.6b. The
other option is to execute 7p first, d 45 =L 048, = 0 as shown in the schedule
in Figure 6.6¢c. Both options result in a latency from source to sink of 2.5T as com-
puted by our hybrid analysis approach. However, when we allow some scheduling
freedom by placing one initial token on both edges of the sequence constraint,
SABfW =1,048,, =1 the latency is 2T as also shown in the schedule in Figure 6.6d.
Therefore, we can conclude that enforcing a static execution order between tasks
mapped to the same processor does not always result in the minimum latency.

6.71 NEGATIVE TOKENS

Recently the use of negative tokens has been introduced in dataflow models [HB16,
dGHKB13]. A negative number of tokens delays the enabling of an actor since
the number of tokens on an edge must be positive before the consuming actor
is enabled. A negative number of tokens can be used in sequence constraints to
model that there are several initial executions of a task before a static execution
order between two tasks starts.

Figure 6.7a shows an example of a dataflow graph, for which enforcing a static exe-
cution order, without using negative tokens, will result in a throughput violation. A
static order is enforced by setting & 7,, = 0, &, = 1. In that case there are insufficient
tokens on cycle v4 - vp = v¢ — v4 to keep up with the periodic source. When
introducing a negative token, 87, = —1, §;,, = 2, the throughput of the source will
be achieved, while there is a static execution order after v4 is executed twice.

For this example, creating a static order with negative tokens results in a latency
of 2T, see Figure 6.7b. Whereas, without negative tokens, the latency will be 3T.
The range of the firing duration of v can result in v¢ pre-empting v 4, which leads
to this increased latency as is shown in Figure 6.7c. The approximative analysis
method [KHB16¢] is not able to compute a feasible result since its analysis did not
converge.

6.7.2 REDUNDANT CONSTRAINTS

Sequence constraints introduce additional constraints in an already connected data-
flow graph of an application. Therefore, adding sequence constraints can lead to
redundant constraints, more configurations and an increased in run-time. We now
present two techniques to reduce this redundancy.

We will exploit that within one application graph, a path is required from the source
to all tasks without tokens. In a dataflow model of that graph, there are tokens on
the edges in the opposite direction to represent buffers with a minimum of one
empty container. This connected graph allows us to create a token distance matrix,

119

& SecTION 6.7.1 - NEGATIVE TOKENS

120

(a) Dataflow graph where a negative number of tokens on dy, between v4 and v¢ can be
ve

useful.
va
VB

@ CHAPTER 6 - HYBRID LATENCY ANALYSIS

3.5

2
time (T)

0.5

(b) Schedule of Figure 6.7a for which d,,

V.
v
ve

3.5

2 2.5
time (T)

1.5

0.5

(c) Schedule of Figure 6.7a for which 8,, = 0, 83, = 2.

8w
P - @~

\\.7,/
8bw

[2a] Figure 6.8: Dataflow graph where the sequence constraints between v4 and v
is redundant to the constraints of the buffer between the actors.

containing the minimum number of tokens on the path P(v;, v ;) between all actors
vi, vj. For each configuration with buffer sizes and specific number of tokens on
the forward and backward edge of the sequence constraints, this matrix can be
constructed.

First of all, the sequence constraints are always redundant when these sequence
constraints are inserted between two tasks, 74 and 7, that are already connect by
a buffer. Such sequence constraints can safely be removed to reduce the number of
configurations. An example is shown in Figure 6.8, where the sequence constraints
between v4 and vp can be removed to reduce the number of configurations.

Secondly, sequence constraints impose redundant constraints if: §,, > P(vq4,v)
or 8p,y > P(vp,v,). Configurations where this equation holds can be skipped
without the possibly of missing a configuration, which leads to the minimal latency.
In the example shown in Figure 6.7a, configurations where §,, > &> + §3 can be
skipped.

6.8 CASE STUDY

In this section we will compare our timed automata-based analysis approach to a
state-of-the-art approximative analysis approach for a WLAN 802.11p transceiver
application which contains cyclic dependencies due to a feedback loop in the algo-
rithm.

The application consists of eight tasks that are each mapped to one of four pro-
cessors using an FPP scheduling policy. Figure 6.9a shows the task graph of this
application, where the colors of the nodes represent a mapping to a processor. The
priority of tasks is indicated next to them, as 7;, where 7, is the lowest possible pri-
ority. The figure also shows the WCET of all tasks or the range [BCET..WCET] for
tasks without constant execution times. The color of the containers in the buffers
connecting the tasks indicates if they are initially empty (red) or full (). The
number of containers in each buffer in Figure 6.9a shows the size of the buffer,
which does not influence the schedule of the tasks as determined by an approxi-
mate analysis approach. The sum of these buffer capacities is 21. Without buffer size
optimizations, these buffer sizes will be set for the analysis of the application. In
this example, the source has a period of 10 ps and a jitter of 5 us. For this application,

121

& SectioN 6.8 — CASE STUDY

SISXTVNV AONALVT dI¥dAH — 9 ¥4.LdVH)) E

BJ 2 us 4 s oy LHS

. p d(i
chest ‘<—CD<— reenc <D<« vit }_>()

P m2 p

dem @ deint ‘

[1..3] ps 4 Us 2 s Lus 1us
(a) Task graph of a WLAN 802.11p transceiver application.
p 2 Uus 4 ys 1us
(59 68
4 _—@— m/"/ " \ d(l)
reenc it ——
V\\ y
01 810 -2 87

dem | & |deint
\ J _._/\\ J

[1.3] ps 4 us 2 Us 1uUs 1us

(b) Dataflow model of Figure 6.9a without including interference.

[sa] Figure 6.9: Task graph and equivalent dataflow model of a WLAN 802.11p
transceiver application.

we want to minimize the maximum latency between the i’th start of the source,
Vsre» and the corresponding i’th production of the Viterbi task, vit.

The approximate analysis approach makes use of the fact that lower buffer capacities
can result in a lower end-to-end latency [KHB16¢]. Buffer sizing is therefore per-
formed iteratively inside the analysis algorithm and sizing of buffers is not deferred
until the analysis of response times of all tasks is computed. In order for the analysis
flow to guarantee convergence, the iterative buffer sizing step increases the buffer
sizes monotonically. Therefore, this buffer sizing technique does not guarantee that
all possible buffer sizes are considered.

Our timed automata-based approach can offer more accurate latency analysis given
buffer capacities. We analyze all possible buffer sizes, thereby guaranteeing the
buffer size configuration that leads to the minimum latency to be present in the
analyzed set of configurations. However, many of these configurations need to be
considered and the evaluation of each of these configurations takes a significant
run-time.

We will now compare the computed buffer sizes, end-to-end latency and run-time

B Table 6.1: Settings used for the two analysis approaches and resulting configura-
tions to consider.

Analysis method Setting Configurations
or iterations

1 Approximative Iterative buffer sizing 2

2 Approximative Iterative sequence constraints 2

3 Approximative Iterative combined 2

4 UPPAAL Buffer sizing 768

5 UPPAAL Sequence constraints 128

6 UPPAAL Combination 8168

7 UPPAAL Comb. no pruning 98304

8 UPPAAL Comb. stopwatches 8168

for the two approaches using the WLANp transceiver application. These numbers
will be used to draw conclusions about which analysis method to use in which
case. For each approach three different settings will be used as shown in Table 6.1:
buffer sizing, introducing sequence constraints, and a combination of both. We
also included results of an analysis option (#7) where no pruning was performed
to identify the difference in run-time. Moreover, stopwatches are used in option #8,
which can results in a speedup, but potentially also less accurate analysis results.

For the timed automata-based analysis method we list the number of configura-
tions that need to be verified in the last column of Table 6.1. In case buffer sizing
and introducing sequence constraints are combined (#6) the number of configura-
tions to consider is 12 times less than the product of both individual cases (98304,
option #7). Firstly, the constraints that can be imposed by three of the seven se-
quence constraints becomes redundant when also performing buffer sizing and
these sequence constraints are therefore removed. Secondly, after the task graph is
translated into a dataflow graph, the minimum throughput can be verified. In this
case, all configurations where the size of the buffer FFT to CHEST is less than two
are discarded since the throughput is then limited by the sequentially executed tasks
on the cycle FFT-EQ-DEMAP-DEINT-VIT-REENC-CHEST-FFT highlighted in
red in Figure 6.9b, which cannot keep up with the periodic source. All remaining
configurations (8168) could keep up with the source without the source blocking
on full buffers. The approximative analysis approach did, for this example, always
converge after two iterations as shown in Table 6.1.

The results of the analysis of the WLANp transceiver are shown in Table 6.2. Two
minimization goals: minimal buffer sizes and minimal latency, are presented in
separate parts of the table. The approximative timed-dataflow approach, however,
does not differentiate between these goals since its goal is to minimize buffer sizes.

The first part of the table shows that when minimizing buffer sizes, both the ap-
proximative timed-dataflow approach as UppaaL-based approach are able to reach
the optimum of 12, even without making use of additional sequence constraints.

123

& SectioN 6.8 — CASE STUDY

SISXTVNV AONALVT dI¥dAH — 9 ¥4.LdVH)) E

BB Table 6.2: Analysis results obtained using the configurations in Table 6.1 for two
minimization goals: minimizing buffer sizes and latency.

Minimizing buffers ~ Minimizing latency

Ybuffer Latency Y buffer Latency Total
(ps) (ps) run-time (s)

1 17 12 17 <1

2 21 17 21 17 <1

3 17 12 17 <1

4 16 13 6.8-10*

5 21 15 21 1.8-10*

6 16 13 8.5-10°

7 16 13 6.3-10°

8 16 13 4.4-10*

Although both approaches result in the same minimum total buffer size, the analysis
using UPPAAL results in a lower latency.

The second part of the table shows that the minimum latency is only reached using
UpPAAL, and is equal for all its analysis options (#4 to #8). Direct control over the
interference between tasks using sequence constraints is advantageous in this case,
since the least amount of configurations are considered (128 for option #5) and it
results in the lowest run-time. The approximative timed-dataflow approach does
result in a higher latency than our timed automata-approach, and interestingly
reaches this latency of 17 ps for a different configuration where the buffer sized are
smaller than the configuration as determined by UppaAL with a corresponding
latency of 15 ps. The difference between the best configuration for both approaches
regarding latency is only in the buffer from FILTER to FFT, where the minimum
latency is obtained for a buffer size of 2, where the approximative timed-dataflow
approach used a buffer size of 1. We also analyzed the configuration of buffer sizes as
found by the approximative timed-dataflow approach by using UPPAAL to compare
the analysis results. This resulted in a latency of 16, which shows that higher buffer
capacities, as derived by our approach, can lead to a lower latency. Also when
using sequence constraints to optimize the latency, there is a difference between
the two approaches. The approximative timed-dataflow approach sets the number
of tokens on all forward edges to o and 1 for all backward edges. The minimum
latency obtained by using UPPAAL is for a configuration where the backward edge
from DEMAP to CHEST is different and contains 2 tokens instead of 1 for the ap-
proximative timed-dataflow approach. In case stopwatch automata are used (#7),
the same minimal latency is found. However, latency analysis results are more
pessimistic as a result of over-approximations for configurations where FFT can
pre-empt EQ, i.e. the size of the buffer between FFT and EQ is larger than one.

The improvement in analysis results of our approach compared to the approxima-
tive timed-dataflow approach comes at the cost of a significant increase in run-time.

The approximative timed-dataflow approach is always finished well within 1 second
as shown in the last column in Table 6.2. On the other hand, the verification time in
UppaAL of each analysis option is between 2.2 -10* and 9.7 - 10° seconds for option
#4-#6 as shown in Table 6.1. The run-time is increased by one order of magnitude
when the pruning step is not used as is shown for option #7 in Table 6.2. Using
stopwatches (#8), a speedup of a factor 20 is achieved. When running 16 threads in
parallel on a multicore server (2x Intel Xeon CPU Es5-2630 v3 @ 2.40GHz), the total
run-time for the option where sequence constraints are introduced (#4) is about
23 minutes.

6.9 CONCLUSION

In this chapter we presented a hybrid analysis approach that determines the mini-
mum latency of a cyclic task graph by adapting buffer sizes and sequence constraints
using a combination of model checking and approximative analysis techniques.
Each task is scheduled on one of the processors using an FPP scheduling policy.

Computationally efficient dataflow analysis techniques are used to derive lower and
upper bounds on buffer sizes. In this way, the number of buffer size configurations is
reduced that need to be considered by more accurate, but computationally intensive,
model checking using UppPAAL. To be able to perform model checking, a network of
timed automata is generated for each of the remaining configurations. The latency
of each configuration is determined using UppaAL and the best configuration is
selected.

Next to the cyclic dependencies resulting from blocking buffers, additional se-
quence constraints are inserted. Bounds on the number of initial tokens on these
sequence constraints is determined by a slightly modified version of an approxima-
tive buffer sizing algorithm. These sequence constraints can potentially reduce the
latency of a task graph.

We compared the results of our hybrid analysis approach with a state-of-the-art
approximative dataflow analysis approach, which uses an iterative buffer sizing
technique. Using our approach, the analyzed latency decreased from 17 us to 15 ps.
The decrease in latency is obtained at the cost of a run-time of 23 minutes instead
of a fraction of a second.

125

& SectioN 6.9 - CONCLUSION

126

CONCLUSION

ABSTRACT - In this chapter we state the conclusions and contributions of this
thesis. We also present some interesting directions for future work that are
extensions of the approaches presented in this thesis.

In this thesis, we address the analysis of CPSs. In particular, we address the analysis
of the embedded real-time system within a CPS implemented on a multiprocessor
system. We focus on modem applications that run on such systems that are part of
a vehicle-to-vehicle communication system.

The type of real-time systems we consider uses blocking buffers for the communi-
cation between tasks. These tasks are ready to execute when they can read a suffi-
cient amount of data from their buffers. Most analysis approaches do not consider
real-time systems, where buffers can introduce cyclic dependencies. To improve
the analysis results, we do consider cyclic dependencies. Moreover, we consider
dynamic applications, where some tasks may execute conditionally, based on the
values of the incoming data. Tasks can execute in parallel on multiple processors,
or execute concurrently and share a processor with other tasks. A run-time sched-
uler determines when a task is allowed to execute. In this thesis, we address the
analysis of systems with three subclasses of run-time schedulers: budget schedulers,
starvation-free schedulers, and non-starvation-free schedulers.

We analyze these real-time systems using dataflow models and model checking
of timed automata. Dataflow models can be analyzed computationally efficiently,
since the analysis is based on the iterative computation of fixed-points, which is
relatively fast. However, schedulers cannot be modeled directly in dataflow mod-
els. The effect of scheduling is included in dataflow models based on a monotonic
over-approximation for the function that calculates the interference between tasks.

NOISNTONOD) — L ¥ALAVHD) &

This monotonic over-approximation enables the iterative fixed-point analysis. In
timed automata, schedulers can be modeled directly, which can lead to more accu-
rate analysis results. However, the run-time of the model checker for these timed
automata can be very high.

71 SUMMARY

Real-time applications containing multiple modes and tasks that are scheduler us-
ing budget schedulers, often result in pessimistic latency analysis results. In order
to improve the latency, we reduce the pessimism in the analysis results for tasks
scheduled using a budget scheduler. Our dataflow analysis approach takes mutually
exclusive execution of tasks into account to reduce this pessimism, as is presented
in Chapter 3. Furthermore, we introduced a starvation-free lock, which allows us
to enforce mutually exclusive execution of tasks. This lock allows parallel execution
of tasks within the same group of tasks, but enforces sequential execution between
different groups of tasks. A key difference with existing locks is that groups of tasks
can only acquire the lock in a predefined order. This order is derived by a compiler
from a sequential OIL-program, which describes a modal real-time stream process-
ing application. From this sequential program, an SVPDF dataflow model is also
generated that is used for checking whether the temporal constraint is satisfied after
adding locks. We also show that the resulting parallel task graph generated by the
compiler is always deadlock-free, despite that additional constraints are introduced
that enforce an execution order of groups of tasks as a result of the locks. The task
graph is deadlock-free because lock statements are added in such a way that no
constraints are introduced that would prevent the same execution order as defined
by the sequential program. As a result of introducing locks in both the application
and the dataflow analysis model, we obtain more accurate analysis results.

A compositional temporal dataflow analysis approach is presented in Chapter 4.
This approach targets applications with modes executed on multiprocessor systems
that use non-starvation-free schedulers, like the FPP scheduler. The analysis ap-
proach relies on the ability to independently characterize the temporal behavior of
modes. Different modes can be analyzed in isolation by introducing additional con-
straints in the application in the form of locks and barriers. Locks ensure that tasks
belonging to different modes, which are also executed on the same processor, exe-
cute mutually exclusive. Barriers ensure that the interference of tasks in one mode
is independent of tasks belonging to a different mode. The additional constraints
introduced by the barriers and locks guarantee that the composition of modes does
not change their individual temporal characterization. As a result, applications
containing a hierarchy of modes can be described in an SVPDF model. The SVPDF
model and the parallel implementation, including locks and barriers, are gener-
ated by a multiprocessor compiler. This model is analyzed by recursively applying
existing dataflow analysis techniques. This approach determines the worst-case
temporal behavior of the entire modal application.

In Chapter 5 we have presented a behavior-preserving transformation of strongly
connected HSDF* graphs into timed automata. These timed automata allow for
the computation of exact end-to-end latencies, because the correlation between the
firing durations of different firings is included in the analysis. The transformation
of HSDF* graphs into behaviorally-equivalent timed automata is possible because
the number of tokens on edges in strongly connected HSDF? models is bounded.
Therefore, buffers can be modeled using the extended timed automata of UpPAAL,
which by definition have a finite number of states. This also guarantees that there
is a maximum number of replicas of the same actor that can fire in parallel. This
limits the number of concurrent state machines — and thus states — required to
model each HSDF? actor.

A hybrid analysis approach is presented in Chapter 6. This approach determines
the minimum latency of an application by adapting buffer sizes and sequence con-
straints using a combination of model checking and approximative dataflow analysis
techniques. We extend the transformation in Chapter 5 of dataflow models to timed
automata with schedulers. Each task is scheduled on one of the processors by using
an FPP scheduling policy. Computationally efficient dataflow analysis techniques
are used to derive lower and upper bounds on buffer sizes. This reduces the number
of buffer size configurations that need to be considered by more accurate - but more
computationally intensive — model checking of timed automata, using UppaaL. To
be able to perform model checking, a network of timed automata is generated for
each of the remaining configurations. The latency of each configuration is deter-
mined using UPPAAL, and the best configuration is selected. Next to the cyclic
dependencies resulting from blocking buffers, additional sequence constraints are
inserted. These constraints can be seen as a more general applicable lock, although
they do not support groups of tasks, but only introduce constraints for pairs of tasks.
Bounds on the number of initial tokens on the sequence constraints is determined
by a slightly modified version of an approximative buffer sizing algorithm. These
constraints can potentially reduce the latency of a task graph.

7.2 CONTRIBUTIONS

In this thesis we have addressed the following research objective:

Define techniques that improve the accuracy of the real-time analysis results,
and also increase the class of real-time multiprocessor systems and applica-
tions that can be analyzed, while minimizing the run-time of the analysis
algorithms.

We have approached this objective for static applications by combining dataflow
analysis with model checking of timed automata, and by introducing additional
constraints to improve analysis results. Dataflow based analysis is very computa-
tionally efficient, since it uses monotonic over-approximations of the system, which
allow efficient iterative fixed-point analysis. However, the dataflow model thereby
abstracts from scheduling decisions, which can lead to a loss of accuracy. Timed au-

129

& SecTiON 7.2 - CONTRIBUTIONS

NOISNTONOD) — L ¥ALAVHD) &

tomata often offer more accuracy, since schedulers can be modeled in more detail,
however, over-approximations are still required for the analysis to remain decid-
able. A 100% accurate analysis is, however, probably not possible for the targeted
systems, since the analysis problem is in general undecidable. Therefore, approxi-
mations have to be applied to the model checking approach, to remain decidable.
Including scheduling in the timed automata increases the accuracy of the analysis
results compared to dataflow analysis approaches, but leads to a non-monotonic
system. This increases the run-time of the model checker for these systems.

By combining both analysis methods, more accurate analysis results are obtained.
Dataflow analysis is used to limit the search space of timed automata. Furthermore,
we introduce additional sequence constraints in applications. The constraints are
also reflected in the analysis models. In general, the constraints limit the possible
interference between tasks. This reduces scheduling freedom, which can lead to a
lower run-time of the model checker. Moreover, these additional constraints enable
the analysis of dynamic applications for non-starvation-free schedulers. For these
dynamic application, the interference of tasks in one mode is made independently
of the tasks in other modes.

Dataflow analysis is suitable for system synthesis, where buffer sizes that lead to the
lowest latency can be determined. The approximation applied in dataflow analysis
allows it to quickly analyze the system for different buffer sizes. Model checking
is more suitable for verification, where a given system with fixed buffer sizes is
accurately analyzed to verify whether it satisfies temporal constraints.

For the analysis of dynamic applications, which contain multiple modes, we pro-
pose to insert locks and barriers in these applications. The sequence constraints
resulting from these locks and barriers ensure that each mode can be character-
ized in isolation, since interference between tasks belonging to different modes
is prevented. This enables dataflow analysis for dynamic applications, which are
scheduled using non-starvation-free schedulers, and reduces the latency for sys-
tems with budget schedulers.

The main contributions of this thesis are:

» We have introduced a lock for dynamic applications that are scheduled using
budget schedulers. The lock prevents interference between tasks in different
modes by introducing additional sequence constraints. Thereby, the min-
imum throughput derived by dataflow analysis on the resulting dataflow
graph is improved. (Chapter 3)

»

‘We have enabled the analysis of dynamic applications with non-starvation-
free schedulers, by introducing barriers. The combination of locks and bar-
riers allows for compositional analysis of modes, where each mode can be
analyzed in isolation. This reduces the run-time of the analysis algorithm.
(Chapter 4)

We have presented a transformation of dataflow graphs into temporally
equivalent timed automata, to obtain exact analysis results. Model check-

»

7-3

ing of the timed automata results in more accurate analysis results, and
allows analysis of systems that make use of out-of-order communication.
Furthermore, the correlation between the execution time of subsequent ex-
ecutions of the same task, and of different tasks can be taken into account.
This way, analysis results are obtained that are more accurate than what is
currently possible with state-of-the-art dataflow based analysis techniques.
(Chapter 5)

We combine computationally efficient dataflow analysis techniques with
model checking of timed automata, for the analysis of applications executed
on multiprocessor systems with non-starvation-free schedulers. Dataflow
analysis is used to derive bounds on buffer sizes at a low run-time. Accurate
analysis results are obtained by model checking of timed automata models,
where the buffer sizes are fixed to values within the bounds that were derived
by dataflow analysis. (Chapter 6)

We introduce sequence constraints between pairs of tasks. This creates cyclic
dependencies, which limit the interference between tasks. This can result
in a reduction of the latency. (Chapter 6)

RECOMMENDATIONS FOR FUTURE WORK

Based on the research conducted in this thesis we give the following recommenda-
tions for future work:

»

We insert locks and barriers in applications based on the assignment of tasks
to processors and on the modes in the application. The sequence constraints
we use are more general and can be applied between all pairs of tasks to po-
tentially improve analysis results. However, we do not present any algorithm
on where to insert these constraints, but explore all possible combinations.
An interesting direction for future work is to derive an efficient algorithm
or heuristics for the automatic insertion of these constraints, with the goal
to minimize latency or meet a throughput constraint.

A similar algorithm can be derived for the subproblem for identifying which
tasks should execute mutually exclusive, by using locks. We enforce tasks
to execute mutually exclusive when they belong to different modes in the
application, and are assigned to the same processor. However, we observed
that there are more cases where it is beneficial to execute tasks mutually
exclusive. The case study in Section 6.8 showed that many tasks, but not all,
must be enforced to execute mutually exclusive in order to minimize the
latency.

For the analysis of dynamic applications, we only performed dataflow an-
alysis after locks and barrier are inserted in the application. It would be
interesting to compare the differences in accuracy and run-time of data-
flow analysis, where locks and barriers are inserted, to results obtained with

131

& SECTION 7.3 - RECOMMENDATIONS FOR FUTURE WORK

132

NOISNTONOD) — L ¥ALAVHD) &

Restrictive

Turing (
complete — J

»

»

Untimed Timed Hybrid

untimed- timed- (? ‘
dataflow/SDF < dataflow/SDF < L ;J
N N N
/ finite k (timed automata hybrid
transition systems “ tmed automata J < automata
N N N

/ timed ‘ "
component model} < t}

[a] Figure 7.1: Figure 2.6 extended with hybrid models.

timed automata, which allow analysis without the need to insert additional
constraints.

The analysis of run-time scheduling using timed automata relies on approx-
imations to remain decidable, either using an over-approximation in the
model, or during model checking of a timed automata model that contains
stopwatches. The two different approaches are not compared thoroughly.
Using stopwatches leads to a significant reduction in run-time. In the gen-
eral case, timed automata extended with stopwatches are undecidable. This
undecidability can in specific cases be prevented, which might be the case
when taking into account that pre-emptions can only happen on clock cycle
boundaries in a processor.

A broader class of systems that also include the continuous time part of a
CPS, are hybrid systems. This class of systems can be described by hybrid
automata, which are more expressive than timed automata, as also shown
in Figure 7.1. The analysis of these hybrid automata is even more computa-
tionally expensive than timed automata, which justifies research into more
abstract models and analysis approaches. It would be interesting to study
whether the techniques presented in this thesis can be generalized such that
they become applicable for hybrid systems.

133

134

ACRONYMS

ADC Analog-to-Digital Converter
BCET Best-Case Execution Time
BDF Boolean Dataflow

BFS Breadth-First Search

CPS Cyber-Physical System

CRC cyclic redundancy check

CSDF Cyclo-Static Dataflow
CSDF* Cyclo-Static Dataflow with auto-concurrency

CTL Computation Tree Logic

DAC Digital-to-Analog Converter

DFS Depth-First Search

DSP Digital Signal Processor

FIFO First-In-First-Out

FPP Fixed Priority Pre-emptive

ESM- Finite State Machine-based Scenario-Aware Data-Flow
SADF

HSDF Homogeneous Synchronous Dataflow

HSDF* Homogeneous Synchronous Dataflow with auto-concurrency
KPN Kahn Process Network

LP Linear Program

MCDF Mode-Controlled Dataflow

MCR Maximum Cycle Ratio

OIL Omphale Input Language

RR Round-Robin

SADF Scenario-Aware Dataflow

SDF Synchronous Dataflow

SVPDF Structured Variable-Rate Phased Dataflow
TDM Time Division Multiplex

TDMA Time Division Multiple Access

TPN Time Petri net

VPDF Variable-Rate Phased Dataflow

SIWANOYOY

WCET
WCRT
WLANp

Worst-Case Execution Time
Worst-Case Response Time
IEEE 802.11p

SYMBOLS

Notation Description

No set of natural numbers including zero.
N set of natural numbers.

Ry set of real numbers including zero.

R set of real numbers.

actor in a dataflow graph.

firing duration of an actor.
maximum firing duration of an actor.
minimum firing duration of an actor.
set of actors.

maximum start time of an actor.
minimum start time of an actor.

AAIRCAE SAASEIRSTIA ST

S

buffer.

e edge in a dataflow graph.
E set of edges.

G dataflow graph.
) initial tokens on an edge.

parameter of a block in an SVPDF graph.
set of parameters.

AV

task.

budget of a task on a processor.

busy period for consecutive executions of a task.
execution interval of a task.

jitter of a task.

period of a task.

priority of a task on a processor.

replenishment interval of budget of a task on a proces-
Sor.

maximum response time of a task.

set of tasks.

worst-case execution time of a task.

index of a token.

timestamp of a token.

value of a token.

DA TR v~

Coﬂ“'bu\]bu>

STOIAS

Notation

Act

C
&
A
Inv
I
L

Description

finite set of actions.

set of clocks.

set of edges.

extended timed automaton.

assigns an invariant to each location.

location.

set of locations in an extended timed automaton.

[A*14

[ACDo3

[ADgo

[ADo4]

[AFM* 03]

[B92]

[B¥9s]

[B*96]

[BBJSo8]

[BBS11]

[BHMo8]

[BKLo8]

[BLo3]

BIBLIOGRAPHY

Waheed Ahmad et al. Resource-constrained optimal scheduling of synchronous
dataflow graphs via timed automata. In ACSD, pages 72-81, 2014. (Cited on page 87).

Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-
time. Information and computation, 104(1):2-34, 1993. (Cited on page 24).

Rajeev Alur and David Dill. Automata for modeling real-time systems. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 322-335.
Springer, 1990. (Cited on page 21).

Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer
science, 126(2):183-235, 1994. (Cited on pages 10 and 21).

Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi.
TIMES: a tool for schedulability analysis and code generation of real-time systems. In
Int’l Conf. on Formal Modeling and Analysis of Timed Systems, pages 60-72. Springer,
2003. (Cited on pages 8, 9, and 108).

Frangois Baccelli et al. Synchronization and linearity: an algebra for discrete event
systems. John Wiley & Sons Ltd, 1992. (Cited on page 89).

Greet Bilsen et al. Cyclo-static dataflow. In ICASSP, volume 5, pages 3255-3258, 1995.
(Cited on page 87).

G. Bilsen et al. Cyclo-static dataflow. IEEE Trans. on Signal Processing, 44(2):397-408,
1996. (Cited on pages 30 and 38).

T. Bijlsma, M.]. G. Bekooij, P. G. Jansen, and G. J. M. Smit. Communication between
nested loop programs via circular buffers in an embedded multiprocessor system.
In Int’l Workshop on Software and Compilers for Embedded Systems (SCOPES), pages
33-42. ACM, 2008. (Cited on pages 37 and 45).

T. Bijlsma, M. J. G. Bekooij, and G. J. M. Smit. Circular buffers with multiple overlap-
ping windows for cyclic task graphs. In Int’l Conf. on High-Performance Embedded
Architectures and Compilers (HiPEAC), volume 5, 2011. (Cited on page 45).

Aske Brekling, Michael R Hansen, and Jan Madsen. Models and formal verification
of multiprocessor system-on-chips. The Journal of Logic and Algebraic Programming,
77(1-2):1-19, 2008. (Cited on page 108).

Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of model
checking. MIT press, 2008. (Cited on pages 17, 18, and 20).

J.T. Buck and E.A. Lee. Scheduling dynamic dataflow graphs with bounded memory
using the token flow model. In Int’l Conf. on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 1993. (Cited on page 30).

140

AHAVIOOITIIg

[BPvMos]

[CES81]

[Cerg2]

[CGMZgs5]

[CSGo9]

[CTCG" 98]

[Daso4]

[dG'12]

[dGHKB13]

[DIGg9]

[Dij65]

[Dij72]

[Dil89]

[DILSo9]

M. J. G. Bekooij, S. Parmar, and J. L. van Meerbergen. Performance guarantees by
simulation of process networks. In Int’l Workshop on Software and Compilers for
Embedded Systems (SCOPES), pages 10-19. ACM, 2005. (Cited on pages 57 and 80).

Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logic of Programs,
pages 52-71. Springer, 1981. (Cited on page 16).

Karlis Cerans. Decidability of bisimulation equivalences for parallel timer processes.
In International Conference on Computer Aided Verification, pages 302-315. Springer,
1992. (Cited on page 23).

Edmund M Clarke, Orna Grumberg, Kenneth L McMillan, and Xudong Zhao. Ef-
ficient generation of counterexamples and witnesses in symbolic model checking.
In Proceedings of the 32nd annual ACM/IEEE Design Automation Conference, pages
427-432. ACM, 1995. (Cited on page 16).

D.E. Culler, H.P. Singh, and A. Gupta. Parallel Computer Architecture: a hardware/-
software approach. Morgan Kaufmann, 1999. (Cited on page 37).

Jean Cochet-Terrasson, Guy Cohen, Stéphane Gaubert, Michael McGettrick, and
Jean-Pierre Quadrat. Numerical computation of spectral elements in max-plus alge-
bra. IFAC Proceedings Volumes, 31(18):667-674, 1998. (Cited on page 31).

Ali Dasdan. Experimental analysis of the fastest optimum cycle ratio and mean
algorithms. TODAES, 9(4):385-418, 2004. (Cited on page 8).

Robert de Groote et al. Max-plus algebraic throughput analysis of synchronous
dataflow graphs. In SEAA, pages 29-38. IEEE, 2012. (Cited on pages 31 and 86).

Robert de Groote, Philip K F Holzenspies, Jan Kuper, and Hajo Broersma. Back to
basics: Homogeneous representations of multi-rate synchronous dataflow graphs. In
Int’l Conf. on Formal Methods and Models for Codesign (MEMOCODE), pages 35-46.
IEEE, 2013. (Cited on page 119).

Ali Dasdan, Sandy S Irani, and Rajesh K Gupta. Efficient algorithms for optimum
cycle mean and optimum cost to time ratio problems. In Proceedings of the 36th
annual ACM/IEEE Design Automation Conference, pages 37-42. ACM, 1999. (Cited
on page 31).

E. W. Dijkstra. Solution of a problem in concurrent programming control. Commun.
ACM, 8(9):569-, September 1965. (Cited on page 15).

Edsger W. Dijkstra. Information streams sharing a finite buffer. Information Process-
ing Letters, 1(5):179 — 180, 1972. (Cited on page 15).

David L Dill. Timing assumptions and verification of finite-state concurrent systems.
In International Conference on Computer Aided Verification, pages 197-212. Springer,
1989. (Cited on pages 21 and 24).

Alexandre David, Jacob Illum, Kim G Larsen, and Arne Skou. Model-based frame-
work for schedulability analysis using UPPAAL 4.1. Model-based design for embedded
systems, 1(1):93-119, 2009. (Cited on pages 16, 86, and 108).

[DSB*13]

[FKH" 08]

[FMPYo6]

[GTo7]

[GGS*06]

[GHB13]

[GHB14]

[GSo2]

[GS10]

[Guaooga]

[Guaogb]

[H"13a]

[H"13b]

Morteza Damavandpeyma, Sander Stuijk, Twan Basten, Marc Geilen, and Henk Cor-
poraal. Schedule-extended synchronous dataflow graphs. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems (CADICS), 32(10):1495-1508, 2013.
(Cited on pages 8 and 38).

Joachim Falk, Joachim Keinert, Christian Haubelt, Jiirgen Teich, and S.S. Bhat-
tacharyya. A generalized static data flow clustering algorithm for mpsoc scheduling
of multimedia applications. In ACM Int’l Conf. on Embedded Software (EMSOFT).
ACM, 2008. (Cited on page 105).

Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Schedulability an-
alysis of fixed-priority systems using timed automata. Theoretical Computer Science,
354(2):301-317, 2006. (Cited on page 108).

Amir Hossein Ghamarian et al. Latency minimization for synchronous dataflow
graphs. In DSD, pages 189-196, 2007. (Cited on page 87).

Amir Hossein Ghamarian, M. C. W. Geilen, Sander Stuijk, Twan Basten, A. J. M.
Moonen, M. J. G. Bekooij, B. D. Theelen, and MohammadReza Mousavi. Throughput
analysis of synchronous data flow graphs. In Int’l Conf. on Application of Concurrency
to System Design (ACSD), pages 25-36. IEEE, 2006. (Cited on pages 26 and 31).

S.J. Geuns,].PH.M. Hausmans, and M.].G. Bekooij. Automatic dataflow model ex-
traction from modal real-time stream processing applications. In Conf. on Languages,
Compilers and Tools for Embedded Systems (LCTES), 2013. (Cited on pages 30, 35, 36,
38, 53, 63, 70, and 78).

S.J. Geuns,] PH.M. Hausmans, and M.J.G. Bekooij. Temporal analysis model ex-
traction for optimizing modal multi-rate stream processing applications. In Int’l
Workshop on Software and Compilers for Embedded Systems (SCOPES), 2014. (Cited
on pages 30, 52, and 63).

Zonghua Gu and Kang G Shin. Analysis of event-driven real-time systems with Time
Petri Nets. In Design and Analysis of Distributed Embedded Systems, pages 31-4o0.
Springer, 2002. (Cited on page 87).

M. Geilen and S. Stuijk. Worst-case performance analysis of synchronous dataflow
scenarios. In IEEE/ACM/IFIP Int’l Conf. on Hardware/Software Codesign and System
Synthesis (CODES+ISSS). ACM, 2010. (Cited on pages 35, 62, and 63).

Qian Guangming. An earlier time for inserting and/or accelerating tasks. Real-Time
Systems, 41(3):181-194, 2009. (Cited on pages 35 and 37).

Qian Guangming. An earlier time for inserting and/or accelerating tasks. Real-Time
Systems, 41(3):181-194, 2009. (Cited on page 63).

Joost P H M Hausmans et al. Two parameter workload characterization for improved
dataflow analysis accuracy. In RTAS, pages 117-126, 2013. (Cited on pages 98 and 100).

J.P.H.M. Hausmans et al. Two parameter workload characterization for improved
dataflow analysis accuracy. In Real-Time and Embedded Technology and Applications
Symp. (RTAS), 2013. (Cited on pages 37 and 39).

141

BIBLIOGRAPHY

142

AHAVIOOITIIg

[H"14]

[H"16]

[Hauis]

[HB16]

[Her88]

[HGGMo1]

[HGWBi14]

[HHJ " o5]

[HHKo1]

[HVo6]

[HWGB13]

[JPTYo8]

Joost P H M Hausmans et al. Unified dataflow model for the analysis of data and
pipeline parallelism, and buffer sizing. In MEMOCODE, pages 12—21. IEEE, 2014.
(Cited on page 86).

Joost P H M Hausmans et al. A refinement theory for timed-dataflow analysis with
support for reordering. In EMSOFT, page 20. ACM, 2016. (Cited on pages 32 and 86).

J.P.H.M. Hausmans. Abstractions for aperiodic multiprocessor scheduling of real-time
stream processing applications. PhD thesis, Centre for Telematics and Information
Technology, University of Twente, 2015. (Cited on pages 5 and 28).

Joost P H M Hausmans and Marco J G Bekooij. A refinement theory for timed-
dataflow analysis with support for reordering. In ACM Int’l Conf. on Embedded
Software (EMSOFT), page 20. ACM, 2016. (Cited on page 119).

M.P. Herlihy. Impossibility and universality results for wait-free synchronization. In
Proc. ACM Symp. on Principles of Distributed Computing (PODC), 1988. (Cited on

page 37).

M Gonzdilez Harbour, JJ Gutiérrez Garcia, JC Palencia Gutiérrez, and JM Drake
Moyano. MAST: Modeling and analysis suite for real time applications. In Euromicro
Conf. on Real-Time Systems (ECRTS), pages 125-134. IEEE, 2001. (Cited on pages 8,
106, and 107).

J. P. H. M. Hausmans, S. J. Geuns, M. H. Wiggers, and M. J. G. Bekooij. Temporal
analysis flow based on an enabling rate characterization for multi-rate applications
executed on MPSoCs with non-starvation-free schedulers. In Int’l Workshop on
Software and Compilers for Embedded Systems (SCOPES), pages 108-117. ACM, 2014.
(Cited on pages 9, 62, 63, and 66).

Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and Rolf
Ernst. System level performance analysis—the SymTA/S approach. IEE Proceedings-
Computers and Digital Techniques, 152(2):148-166, 2005. (Cited on pages 8, 106,
and 107).

T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A time-triggered language
for embedded programming. In Embedded Software, pages 166-184. Springer, 2001.
(Cited on page 37).

Martijn Hendriks and Marcel Verhoef. Timed automata based analysis of embedded
system architectures. In Proc. Parallel & Distributed Processing Symp., pages 8-pp.
IEEE, 2006. (Cited on pages 8, 9, 97, and 107).

J. P. H. M. Hausmans, M. H. Wiggers, S. J. Geuns, and M. J. G. Bekooij. Dataflow
analysis for multiprocessor systems with non-starvation-free schedulers. In Int’]
Workshop on Software and Compilers for Embedded Systems (SCOPES). ACM, 2013.
(Cited on pages 9, 63, and 66).

Bengt Jonsson, Simon Perathoner, Lothar Thiele, and Wang Yi. Cyclic dependen-
cies in modular performance analysis. In ACM Int’l Conf. on Embedded Software
(EMSOFT), pages 179-188. ACM, 2008. (Cited on pages 8 and 107).

[K*16]

[Kah74]

(KB17]

[KHB16a]

[KHB16b]

[KHB16c]

[KYo4]

[Lamy4]

[Lamyo9]

[Lewogo]

[LM*87]

[LMB"14]

[LMCi2]

Peter Koek et al. CSDF”: A model for exploiting the trade-off between data and
pipeline parallelism. In SCOPES, pages 30-39. ACM, 2016. (Cited on pages 28, 30,
and 87).

G. Kahn. The semantics of a simple language for parallel programming. In Proceed-
ings IFIP Congress, pages 471-475, 1974. (Cited on page 32).

P Kurtin and M Bekooij. An abstraction-refinement theory for the analysis and
design of real-time systems (extended version). CTIT Technical Report Series, (TR-
CTIT-17-06), 2017. (Cited on pages 9 and 10).

P. S. Kurtin, J. P. H. M. Hausmans, and M. J. G. Bekooij. Combining offsets with
precedence constraints to improve temporal analysis of cyclic real-time streaming
applications. In Real-Time and Embedded Technology and Applications Symp. (RTAS).
IEEE, 2016. To appear. (Cited on pages 8 and 72).

P. S. Kurtin, J. P. H. M. Hausmans, and M. J. G. Bekooij. HAPI: An event-driven
simulator for real-time multiprocessor systems. In Int’l Workshop on Software and
Compilers for Embedded Systems (SCOPES). ACM, 2016. (Cited on pages 57 and 80).

Philip S Kurtin, Joost P H M Hausmans, and Marco] G Bekooij. Combining off-
sets with precedence constraints to improve temporal analysis of cyclic real-time
streaming applications. In Real-Time and Embedded Technology and Applications
Symp. (RTAS), pages 1-12. IEEE, 2016. (Cited on pages 99, 101, 106, 108, 114, 117, 119,
and 122).

Pavel Kr¢al and Wang Yi. Decidable and undecidable problems in schedulability
analysis using timed automata. In Int’l Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pages 236-250. Springer, 2004. (Cited on
page 108).

L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM, 17(8), 1974. (Cited on page 37).

L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Trans. Comput., 28(9), 1979. (Cited on page 37).

Harry R Lewis. A logic of concrete time intervals. In Logic in Computer Science, 1990.
LICS’90, Proceedings., Fifth Annual IEEE Symposium on e, pages 380-389. IEEE, 1990.
(Cited on page 21).

Edward Lee, D. G. Messerschmitt, et al. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235-1245, 1987. (Cited on pages 29 and 31).

Alok Lele, Orlando Moreira, Joao Bastos, Ricardo Almeida, Paulo Pedreiras, and
Kees van Berkel. Analyzing preemptive fixed priority scheduling of data flow graphs.
In IEEE Symp. on Embedded Systems for Real-Time Multimedia (ESTIMedia), pages
50-59. IEEE, 2014. (Cited on pages 9 and 106).

Alok Lele, Orlando Moreira, and Pieter JL Cuijpers. A new data flow analysis model
for tdm. In Proceedings of the tenth ACM international conference on Embedded
software, pages 237-246. ACM, 2012. (Cited on page 9).

143

BIBLIOGRAPHY

144

AHAVIOOITIIg

[LMvBis5]

[LPgs]

[MBoy]

[MDAo9]

[Mil8o]

[MLR*10]

[N*o2

[Par81]

[PBL9s5

[PWT*07]

[RCo4a]

[RCo4b]

[Rei68]

Alok Lele, Orlando Moreira, and Kees van Berkel. FP-scheduling for mode-
controlled dataflow: a case study. In Design, Automation and Test in Europe (DATE),
pages 1257-1260. EDA Consortium, 2015. (Cited on page 63).

E.A. Lee and T.M. Parks. Dataflow process networks. In Proc. of the IEEE, May 1995.
(Cited on pages 27, 32, and 38).

Orlando M. Moreira and Marco J. G. Bekooij. Self-timed scheduling analysis for real-
time applications. EURASIP Journal on Advances in Signal Processing, 2007(1):1-14,
2007. (Cited on pages 85 and 87).

Gabor Madl, Nikil Dutt, and Sherif Abdelwahed. A conservative approximation
method for the verification of preemptive scheduling using timed automata. In Real-
Time and Embedded Technology and Applications Symposium, 2009. RTAS 2009. 15th
IEEE, pages 255—-264. IEEE, 2009. (Cited on page 108).

Robin Milner. A calculus of communicating systems. 1980. (Cited on page 19).

Marius Mikucionis, Kim Guldstrand Larsen, Jacob Illum Rasmussen, Brian Nielsen,
Arne Skou, Steen Ulrik Palm, Jan Storbank Pedersen, and Poul Hougaard. Schedula-
bility analysis using uppaal: Herschel-planck case study. In Int’l Symp. on Leveraging
Applications of Formal Methods, Verification and Validation, pages 175-190. Springer,
2010. (Cited on page 107).

A.Nieuwland et al. C-HEAP: A heterogeneous multi-processor architecture template
and scalable and flexible protocol for the design of embedded signal processing
systems. Design Automation for Embedded Systems (DAES), 7(3), 2002. (Cited on

page 37).

David Park. Concurrency and automata on infinite sequences. In Theoretical com-
puter science, pages 167-183. Springer, 1981. (Cited on page 19).

Jose Luis Pino, Shuvra S Bhattacharyya, and Edward A Lee. A hierarchical multipro-
cessor scheduling system for dsp applications. In Signals, Systems and Computers,
1995. 1995 Conference Record of the Twenty-Ninth Asilomar Conference on, volume 1,
pages 122-126. IEEE, 1995. (Cited on page 30).

Simon Perathoner, Ernesto Wandeler, Lothar Thiele, Arne Hamann, Simon
Schliecker, Rafik Henia, Razvan Racu, Rolf Ernst, and Michael Gonzalez Harbour.
Influence of different system abstractions on the performance analysis of distributed
real-time systems. In ACM Int’l Conf. on Embedded Software (EMSOFT), pages
193-202. ACM, 2007. (Cited on pages 8 and 107).

J. Real and A. Crespo. Mode change protocols for real-time systems: A survey and a
new proposal. Real-time systems, 2004. (Cited on page 63).

Jorge Real and Alfons Crespo. Mode change protocols for real-time systems: A
survey and a new proposal. Real-Time Syst., 26(2):161-197, 2004. (Cited on pages 35
and 37).

Raymond Reiter. Scheduling parallel computations. Journal of the ACM (JACM),
15(4):590-599, 1968. (Cited on pages 31 and 114).

[S*89]

[ST10]

[ST13]

[SBog]

[SBWog]

[Szy88]

[T*o6]

[TBW92a]

[TBWog2b]

[TBWo4]

[TCG*o1]

[TSog

[vdBBoy]

[VKSG17]

Lui Sha et al. Mode change protocols for priority-driven preemptive scheduling.
Real-Time Systems, 1(3):243-264, 1989. (Cited on pages 35, 37, and 63).

N. Stoimenov et al. Resource adaptations with servers for hard real-time systems. In
ACM Int’l Conf. on Embedded Software (EMSOFT). ACM, 2010. (Cited on pages 35,
37, and 38).

E Siyoum et al. Automated extraction of scenario sequences from disciplined data-
flow networks. In Int’l Conf. on Formal Methods and Models for Codesign (MEM-
OCODE), 2013. (Cited on pages 35 and 38).

Sundararajan Sriram and S. S. Bhattacharyya. Embedded multiprocessors: Scheduling
and synchronization. CRC press, 2009. (Cited on pages 8, 25, 29, and 31).

M. Steine, M.J.G. Bekooij, and M.H. Wiggers. A priority-based budget scheduler
with conservative dataflow model. In Euromicro Conf. on Digital System Design
Architectures, Methods and Tools (DSD). IEEE, 2009. (Cited on pages 36 and 38).

B.K. Szymanski. A simple solution to Lamport’s concurrent programming problem
with linear wait. In Proc. Int’l Conference on Supercomputing, 1988. (Cited on page 37).

B.D. Theelen et al. A scenario-aware data flow model for combined long-run average
and worst-case performance analysis. In Int’l Conf. on Formal Methods and Models
for Codesign (MEMOCODE). IEEE, 2006. (Cited on page 38).

K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority preemptively
scheduled systems. In IEEE Real-Time Systems Symp. (RTSS), pages 100-109. IEEE,
1992. (Cited on page 63).

KW. Tindell, A. Burns, and A.J. Wellings. Mode changes in priority preemptively
scheduled systems. In IEEE Real-Time Systems Symp. (RTSS), pages 100-109, Dec
1992. (Cited on pages 35 and 37).

K. W. Tindell, A. Burns, and A.]. Wellings. An extendible approach for analyzing
fixed priority hard real-time tasks. Real-Time Systems, 6(2):133-151, 1994. (Cited on
pages 9 and 66).

Lothar Thiele, Samarjit Chakraborty, Matthias Gries, Alexander Maxiaguine, and
Jonas Greutert. Embedded software in network processors-models and algorithms.
In ACM Int’l Conf. on Embedded Software (EMSOFT), pages 416—434. Springer, 2001.
(Cited on page 107).

Lothar Thiele and Nikolay Stoimenov. Modular performance analysis of cyclic data-
flow graphs. In ACM Int’l Conf. on Embedded Software (EMSOFT), pages 127-136.
ACM, 2009. (Cited on pages 8 and 107).

J.-W. van den Brand and M.J.G. Bekooij. Streaming consistency: a model for efficient
MPSoC design. In Euromicro Conf. on Digital System Design Architectures, Methods
and Tools (DSD), 2007. (Cited on page 37).

Reinier van Kampenhout, Sander Stuijk, and Kees Goossens. Programming and
analysing scenario-aware dataflow on a multi-processor platform. In Design, Automa-
tion and Test in Europe (DATE), pages 876-881. European Design and Automation
Association, 2017. (Cited on page 63).

145

BIBLIOGRAPHY

146

AHAVIOOITIIg

[WBSo7a]

[WBSo7b]

[WBSo9]

[WBS10]

[WGHBA15]

[WHGB14]

M. H. Wiggers, M. . G. Bekooij, and G. J. M. Smit. Modelling run-time arbitration by
latency-rate servers in dataflow graphs. In Int’l Workshop on Software and Compilers
for Embedded Systems (SCOPES), pages 11-22. ACM, 2007. (Cited on page 62).

M.H. Wiggers, M.].G. Bekooij, and G.J.M. Smit. Modelling run-time arbitration by
latency-rate servers in dataflow graphs. In Int’l Workshop on Software and Compilers
for Embedded Systems (SCOPES), 2007. (Cited on page 40).

M.H. Wiggers, M.J.G. Bekooij, and G.J.M. Smit. Monotonicity and run-time schedul-
ing. In ACM Int’l Conf. on Embedded Software (EMSOFT), 2009. (Cited on pages 6,
9, 28, 36, 38, and 62).

M.H. Wiggers, M.J.G. Bekooij, and G.J.M. Smit. Buffer capacity computation for
throughput-constrained modal task graphs. ACM Trans. on Embedded Computing
Systems (TECS), 10(2):17, 2010. (Cited on pages 35, 38, and 62).

Philip S Wilmanns, Stefan] Geuns, Joost P H M Hausmans, and Marco] G Bekooij.
Buffer sizing to reduce interference and increase throughput of real-time stream
processing applications. In IEEE Symp. on Real-Time Computing (ISORC), pages
9-18. IEEE, 2015. (Cited on pages 8, 105, 106, and 109).

P. S. Wilmanns, J. P. H. M. Hausmans, S. J. Geuns, and M. J. G. Bekooij. Accuracy
improvement of dataflow analysis for cyclic stream processing applications scheduled
by static priority preemptive schedulers. In Euromicro Conf. on Digital System Design
Architectures, Methods and Tools (DSD). IEEE, 2014. (Cited on pages 63, 67, 70,
and 74).

LiST OF PUBLICATIONS

[GK:1] Guus Kuiper, Berend H] Dekens, Stefan] Geuns, Philip S Wilmanns, Joost P H M
Hausmans, and Marco] G Bekooij. Compiler for real-time multiprocessor systems
with shared accelerators. In Design, Automation and Test in Europe (DATE), 2015.

[GK:2] Guus Kuiper, Stefan] Geuns, and Marco] G Bekooij. Utilization improvement by
enforcing mutual exclusive task execution in modal stream processing applications.
In Int’l Workshop on Software and Compilers for Embedded Systems (SCOPES).
ACM, 2015.

[GK:3] Guus Kuiper, Stefan] Geuns, Joost P H M Hausmans, and Marco] G Bekooij.
Compositional temporal analysis method for fixed priority pre-emptive scheduled
modal stream processing applications. In Int’l Workshop on Software and Compilers
for Embedded Systems (SCOPES), pages 98-107. ACM, 2016.

[GK:4] Guus Kuiper and Marco J G Bekooij. Latency analysis of homogeneous syn-
chronous dataflow graphs using timed automata. In Design, Automation and Test
in Europe (DATE). IEEE, 2017.

[GK:5] Guus Kuiper, Philip S Kurtin, and Marco] G Bekooij. Hybrid latency minimiza-
tion approach using model checking and dataflow analysis. In Int’l Workshop on
Software and Compilers for Embedded Systems (SCOPES). ACM, 2017.

THIS THESIS

@phdthesis{kuiper2019:thesis,
author={Kuiper, Guus},
title={Accurate analysis of real-time stream processing applications --
using dataflow models and timed automata},
school={University of Twente},

address={P0O Box 217, 7500 AE Enschede, The Netherlands},
year={2019},

month=mar,

day={8},

number={IDS Ph.D. Thesis Series No. 18-463},
issn={2589-4730},

isbn={978-90-365-4541-9},

doi={10.3990/1.9789036545419}

BiBTEX of this thesis

148

Cyber-Physical System, 3

abstraction
bounding, see also
bounding abstraction
inclusion, see also
inclusion abstraction
actor, 25
actuator, 3
admissible schedule, 38
auto-concurrency, 28, 30

BiBTEX of this thesis, 147
bisimulation, 19
bounding abstraction, 9
buffer, 4

clock region, 23
complexity class, 24
concurrency, 5
conditional execution, 4
configuration, 109
consistency, 28
continuous-time, 3
contributions, 130
CSDE 30

CSDF*, 30

cyclic dependencies, 5
cyclic dependency, 105

data-driven, 25
Dataflow models, 25
dataflow models
BDE see also BDF
CSDF, see also CSDF

INDEX

CSDF*, see also CSDF*
HSDE, see also HSDF
SDEF, see also SDF
SVPDE see also SVPDF

deadlock, 27

direct predecessors, 17

direct successors, 17

discrete-time, 3

dynamic application, 4

edge, 25

embedded system, 2
enabled, 25

end-to-end latency, 89
execution time, 5

external enabling time, 66

firing duration, 25

firing rule, 25

fixed-point, 9

functional firing, 27
functionally deterministic, 27

handshaking actions, 24
HSDE 25

interference, 6

latency, 5
lock, 35
lock implementation, 46

modal application, 4
mode, 4

XAAN]

mode changes, 35
model checking, 16
monotonic, 9
monotonicity, 28
mutually exclusion
inter-iteration, 43
intra-iteration, 43

parallelism, 5
periodic, 3

rate, 29

reachability analysis, 18
backward reachability, 18
forward reachability, 18

real-time system, 4

region graph, 23

repetition vector, 28, 29

replenishment interval, 7, 40

research objective, 129

response time, 6

scheduler, 5, 6
scheduling
FPP, see also FPP
RR, see also RR
TMDA, see also TDMA
SDEF 29
self-edge, 28
self-timed execution, 25
Sensor, 3
sequence constraints, 116
sequential firing rule, 27
shared resource, 6
static application, 4
static schedule, 29
static-order schedule, 110, 119
stream processing applications, 3
SVPDE 30
synthesis, 130
system
CPS, see also Cyber-Physical System
embedded, see also embedded sys-
tem
real-time, see also real-time system

task, 3
terminal state, 17
throughput, 5
timed automata, see also timed automa-
ton
timed automaton, 22
token, 25
topology matrix, 28
transition
delay transition, 23
discrete transition, 22
transition system, 17
quotient transition system, 20
timed transition system, 22

uppaal
guard, 91
select, 91
synchronization, 91
update, 91

verification, 130

151

\\'
RULARLY

AN

|\

A
_\\
L2\
X
\4

5

XTH“
9‘789

978903651;““9
419“

036"545

	Front cover
	Colophon
	Abstract
	Samenvatting
	Dankwoord
	Contents
	1 Introduction
	1.1 Cyber-Physical Systems
	1.2 Real-time systems
	1.2.1 Run-time scheduling
	1.2.2 Analysis of run-time scheduling

	1.3 Problem statement
	1.4 Contributions
	1.5 Outline

	2 Background
	2.1 Model checking
	2.1.1 Transition systems
	2.1.2 Reachability analysis
	2.1.3 Bisimulation
	2.1.4 Timed automata

	2.2 Dataflow models
	2.2.1 Properties of dataflow models
	2.2.2 More expressive dataflow models
	2.2.3 Analysis

	2.3 Analysis models for concurrent systems
	2.4 Summary

	3 Enforcing mutually exclusive task execution in modal applications
	3.1 Related work
	3.2 Basic idea
	3.3 Types of mutual exclusivity
	3.4 Response times TDMA
	3.5 Real-time lock implementation
	3.5.1 Realization
	3.5.2 Code Generation
	3.5.3 Deadlock-freedom

	3.6 SVPDF model
	3.7 Lock from sequential specification
	3.8 Case study
	3.9 Conclusion

	4 Compositional analysis of modes and FPP scheduling
	4.1 Related Work
	4.2 Basic idea
	4.3 Analysis flow
	4.3.1 Flattening of a hierarchical level

	4.4 Periodic source constraints
	4.5 Response times
	4.5.1 Mutual exclusive execution using locks

	4.6 Response times larger than period
	4.7 Case study
	4.8 Conclusion

	5 Latency analysis using timed automata
	5.1 Related work
	5.2 The HSDFa model
	5.3 Max-plus Semantics of HSDFa
	5.4 Extended timed automata
	5.5 Timed automata model of HSDFa graphs
	5.5.1 Uppaal components
	5.5.2 Dataflow edge model
	5.5.3 Actor model
	5.5.4 Complete automaton of an HSDFa graph
	5.5.5 Integer clock constraints

	5.6 Case study
	5.7 Conclusion

	6 Hybrid latency analysis
	6.1 Introduction
	6.2 Related work
	6.3 Basic idea
	6.4 Timed automata
	6.4.1 FIFO buffer
	6.4.2 Task template
	6.4.3 Processor template
	6.4.4 Verification

	6.5 Timed-dataflow
	6.5.1 Deadlock
	6.5.2 Minimum guaranteed throughput
	6.5.3 Approximative dataflow analysis

	6.6 Hybrid analysis
	6.7 Sequence constraints
	6.7.1 Negative tokens
	6.7.2 Redundant constraints

	6.8 Case study
	6.9 Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Contributions
	7.3 Recommendations for future work

	Acronyms
	Symbols
	Bibliography
	List of Publications
	Index
	Back cover

